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Summary

This thesis investigates a number of image-adaptive, JPEG-compatible postfiltering
and pre-post filtering methods designed to minimize the DCT blocking distortion.
A pre-post filtering system uses inverse pair filters for high frequency preemphasis
before encoding and high frequency deemphasis after decoding. The inverse pair pre-
post filters are related by the inverse relationship P(w) = 1/D(w), where P is the
preemphasis filter and D is the deemphasis postfilter. A postfiltering system does
not preemphasize the image before encoding. These techniques minimize the mean
square error (MSE), improve the objective and subjective quality of low bit rate JPEG
gray-scale images, and simultaneously enhance their perceptual visual quality. All the
variants of the algorithms presented minimize the MSE below the level of baseline
JPEG image compression, which is used as our comparison basis for similar bit rates.
Convergence to a unique MMSE is possible for fixed quantization matrices, however,
it cannot be guaranteed when image-adaptive quantization is jointly optimized under
pre-post filtering.

We develop the theoretical basis of the Fstimated Spectrum Adaptive Postfilter
(ESAP) algorithm. ESAP is the main postfiltering algorithm used to minimize DCT
blocking. ESAP utilizes either the default JPEG quantization table or image-adaptive
DCT quantization matrices created in a preprocessing stage prior to image compres-
sion. At the decoder, the algorithm estimates 2-D pixel-adaptive bandwidths directly
from the dequantized DCT coefficients to control a 2-D spatially-adaptive non-linear

postfilter. Consistent with the human visual system tolerance to quantization errors



in the high frequency regions, the algorithm performs directional filtering parallel to
the edges and no filtering across the edges, subject to filter design constraints. Postfil-
tered images show minimal blurring of their true edges while blocking is significantly
removed. ESAP relies on a DFT analysis of the DCT and is compliant with the coded
stream syntax of the Independent JPEG Group (IJG) Version 5b Software.

Additionally, this thesis explores several other variants of the Estimated Spec-
trum Adaptive Postfilter applied to non-DCT coders such as vector quantization
(VQ), subband coders (SBC), and Projection Onto Convex Sets (POCS). We com-
pare the performance of these basic image coding methods against the same extended
coders used with image preprocessing, ESAP postprocessing, or both, in a coder-
compliant manner. These methods may or may not incorporate image-adaptive
quantization and pre-post filtering. We also extend the concepts of the dbz audio
noise reduction systems to model and demonstrate an [terative Pre-post Filter (IPF).
The IPF is applied to JPEG and to Set Partitioning In Hierarchical Trees (SPIHT)
octave-band subband coders. We also process JPEG color images, synthetic aperture
radar (SAR) images, and image sequences.

Typical PSNR improvement depends on the image, the encoding method, and
the bit rate, and can range between 0.5-3.2 dB over baseline JPEG for 512x512 8-
BPP gray-scale images. A comparison including all the treated techniques is presented

at the conclusion of the thesis.

xX1v



CHAPTER 1

Introduction

The Joint Photographic Expert Group (JPEG) image compression standard has be-
come the most widely used international format for image compression and display
among all the major computer applications. Most of JPEG’s predominance stems
from its ability to retain a relatively high image quality at low bit rates in the range
of 0.5 to 1.0 BPP and its platform-independent format exchangeability. These were
the design goals of the standard, and certainly, they have been achieved.

One typical application that makes extensive use of JPEG is Internet World
Wide Web browsing. With the exponential growth of many web services, the ever-
increasing need to push more image data through relatively slow 28-56 Kbps analog
line Internet connections and the need to alleviate highly congested high-data-rate
packet networks we need to both increase the speed of the connections and also
improve the efficiency of the image coding algorithms. Given the wide acceptance
of the JPEG standard, this thesis proposes various methods that could externally
enhance its DCT coding performance to levels approaching the latest subband coders.
We preprocess and postprocess the images in a manner that enhances the image
quality even at a lower bit rate while still maintaining full JPEG compliance.

We believe that JPEG will continue to be one of the main image compression
formats in the foreseeable future. Therefore, it is worth considering various alterna-
tives that could increase its performance beyond its current limits. Additionally, these
techniques could permeate into other applications such as low bit rate video telecon-
ferencing and MPEG video coding and could improve their burgeoning presence in
the expanding multimedia market.

This thesis investigates a number of image-adaptive JPEG-compatible postfilter-



ing and pre-post filtering methods designed to minimize DCT blocking artifacts. The
blocking distortion is the most significant limitation found in DCT-based still image
coding systems. At low bit rates, DCT coders may exhibit major blocking artifacts
and loss of quality. Blocking decreases the quality of the reproduction and could
render the image or sequence useless beyond certain compression ratios. It arises
from the artificial independent coding of 8x8 minimum coded unit (MCU) subimages
which comprise the larger image.

Many mitigation techniques have been proposed as early as 1980. We survey a
number of them, propose several new alternative blocking reduction algorithms and
make some performance comparisons. All the proposed algorithms are modular and
external to the JPEG still image compression standard. We ensure full JPEG com-
patibility by performing external image preprocessing, postprocessing, postfiltering,
or pre-post filtering without altering the JPEG syntax to guarantee universal coder
compatibility. These algorithms intend to improve both the objective and subjec-
tive quality of low bit rate gray-scale images at rates as low as 0.25 BPP. We model
and test a number of the algorithms thoroughly and present broad objective and
subjective assessments for each one.

The main building block of this thesis is a pixel-adaptive nonlinear postfilter
named the Fstimated Spectrum Adaptive Postfilter (ESAP) algorithm. ESAP’s main
objective is to enhance JPEG images by reusing the information stored in the decoded
DCT coefficients of adjacent blocks. By interpolating this already available block-
independent frequency domain information and reapplying it to the decoded images,
we are able to adaptively postfilter the decoded images to improve their quality. This
is done again in a JPEG-compliant manner without increasing the nominal bit-rate
with large overhead. ESAP can be used in conjunction with JPEG adaptive quanti-
zation image preprocessing and pre-post filtering. Additionally, ESAP is extended to
JPEG color images, gray-scale image sequences, applied to synthetic aperture radar

(SAR) images, and finally, extended to subband coding aiming at improving the



objective and subjective quality of these images while keeping the bit rate constant.

For reference purposes, the natural image examples to be presented are 512 x 512
or 256 x 256 8-BPP gray-scale images coded at 0.25, 0.5 and 1.0 BPP. The SAR images
are 1008 x 1008 gray-scale images also coded at 0.25, 0.5 and 1.0 BPP.

Chapter 2 presents some background algorithms and image coding methods that
will aid in understanding the forthcoming chapters of this thesis. Chapter 3 lays out
the foundation of the ESAP algorithm. Chapter 4 discusses a number of postfil-
tering applications of ESAP to JPEG and non-JPEG images. Chapter 5 addresses
image-adaptive pre-post filtering. This chapter presents the theory and experimental
results of the Iterative Pre-post Filter (IPF) algorithm. Chapter 6 explores the idea
of postfiltering and pre-post filtering of SBC images. Finally, we conclude this work
in Chapter 7 stating the contributions and findings of this research. We propose some

possible areas for future investigation.



CHAPTER 2

Background

The Joint Photographic Expert Group (JPEG) Standard [1, 2, 3, 4] has become the
image compression format of choice among all major computer platforms. The advent
of the World Wide Web [5] has made JPEG the most used lossy image compression
standard. The latest and all future versions of the most popular web browsers support
the JPEG progressive mode. This mode was specifically designed for low bit rate
channels. Browsers initially display the text and then proceed to load a coarse version
of any images in the hypertext document. Then, these images are progressively
updated giving the viewer the illusion of a faster download.

The Telecommunications Act of 1996 [6], which deregulates telephone, cable, and
broadcast television, strongly encourages DCT and SBC-based systems. It standard-
izes high definition digital television (HDTV) [7], an emerging DCT-based television
standard that will eventually supersede the National Television Standard Committee
(NTSC) analog television. The current DCT standards will certainly influence how
much openness, scalability, and interoperability is achieved in the future, thus the
importance of overcoming some of the DCT limitations. It is the intent of this thesis
to offer some postfiltering and pre-post filtering image-enhancement algorithms that
could help to promote widespread acceptance of DCT-based systems.

In the following sections, we present some definitions and background about
the algorithms whose decoded images were processed with the Estimated Spectrum
Adaptive Postfilter. This leads into the theory of ESAP and its present applications.
ESAP is then followed by the Iterative Pre-post Filter algorithm. Finally, we present

the contributions of this work and suggest some areas for future research.
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Figure 2.1: A 2-D adaptive filter or linear combiner.

2.1 Adaptive Filters

Let {m,n} be discrete-time indexes. A 1-D adaptive filter [8] differs from a fixed
filter in that its coefficients h,,[n] = h[m — n| = h,,, vary as a function of the filter
input #[n] at any discrete time m. Similarly, a 2-D adaptive filter with spatial indexes
m = (my,mz) and n = (nq, ny), differs from a 2-D fixed filter in that its coeflicients
hm[n] = h[m — n] = Ay, vary with spatial displacement m as a function of the filter
input Z[n, na).

Referring to Figure 2.1, let Z[n] be a decoded JPEG image with its blocking arti-
facts caused by DCT coefficient quantization noise. Let a 2-D noncausal FIR adaptive
lowpass filter hpy[n], placed in a closed-loop configuration as a linear combiner [9],
adapt its 2-D cutoff frequency w[m] as a function of the local bandwidth of the recon-
structed signal Z[n] measured in a neighborhood R%, = [ny—mi+M /2, ng—mqy+M/2],
with M even. Let us assume that this local bandwidth can be estimated from the

DCT of &[n] over R%,. At the encoder, the local pixel squared error is

2[n] = («[n] — &[n])". (2.1)



Let z £ z[n], e = ¢[n] and reshape Z[n] and hy[n] into the column vectors

&[no] hm[no]
. Z[n hm(n
x,2| M 2| ) 2.2)
i:[nMXM_l] hm[nMxM—l]
By substituting (2.2) into (2.1) we obtain
¢ = (¢—XuHJ,)
- T — Z’CX. H?nn ‘I_ H?l’lllengHmn-' (2.3)

To obtain the MSE, we observe that = and X are stationary signals and then take
the expected value of (2.3)

MSE £ =E{e?})

= E{IZ —_ 2:UX11HT + HT XllXiZ;Hmll}

mn mn

= E{2?} —2B{aXu AL + H.  F{X. X Hun. (2.4)

The filter coefficients Hyy are arbitrary deterministic constants for each m.
Therefore they can be placed outside the averaging operation. It is clear from (2.4)
that p i1s a quadratic function of the adaptive filter coefficients Hyyy when the input
image x and its reconstruction Z are stationary. The MSE is a summation of quadratic
and linear terms over m; therefore p is quadratic. This becomes more explicit if we

reformulate the MSE as
po= E{EQ}

N2-1M?2-1 N2-1M?-1M?-1
N2 (Z wm_2 Z Z wmwmlhml‘}' Z Z Z hmlwmlxm_] m_]) (2'5)

m=0 ]=0 m=0 1=0 j=0

The triple summation in (2.5) emphasizes the quadratic nature of g as a function of
the adaptive filter coefficients Ay . Because of its quadratic nature, the MSE function

has a hyperparaboloid shape in the number of parameters used by the adaptation



algorithm. It must be upward concave and consequently has a unique minimum.
As we will see, this is indeed the case for ESAP, which searches for the minimum
mean square error (MMSE) or equivalently the peak signal-to-noise ratio (PSNR) as
a function of two or four adaptive parameters. Once the MMSE point is found, it is
transmitted to the decoder as side information.

In Chapter 5 we will find that the MMSE is no longer a unique minimum once
we introduce JPEG image-adaptive coefficient quantization. The same is true for the
SBC systems of Chapter 6. The MSE is approximately smooth but it can converge
to local minima (Figure 6.2). It is well known that integer quantization is a nonlinear
process. However, this nonlinear response is still sufficiently small to make the JPEG-
IPF and the SBC-IPF algorithms useful despite the nonquadratic response of the MSE

search surface.

2.2 Awudio Noise Reduction Systems

The two most well known audio noise reduction systems are the Dolby and dbx audio
filters [10, 11]. Although the dbx system was commercially dormant after the intro-
duction of the Dolby A system in 1966, it has again reappeared in several computer
applications such as PC soundcards. The dbx system is very useful in our analysis
since it is the basis for Chapters 5 and 6 of this research.

The basic idea behind audio noise reduction is that low-level signals are dy-
namically boosted above the noise threshold during recording to mask the recording
medium noise. At playback, the signal is dynamically attenuated, bringing it to its
original dynamic range and simultaneously lowering the noise level. The dynamic
boost is controlled by the signal’s instantaneous amplitude, frequency content, and
dynamic properties. Noise reduction systems can be static, dynamic, postfiltered,
and pre-post filtered.

Tone controls are examples of static filters. A lowpass filter can reduce hiss,



while a highpass filter reduces hum. Given an audio signal with a certain bandwidth,
we can select how much of the low frequencies are retained using the bass control.
The high frequencies are limited with the treble control. An equalizer is another
example of a static bandpass filter. It selectively attenuates or boosts fixed frequency
bands to suit the listener’s preferences. A static filter does not change with variations
in the input signal. An example of a dynamic filter is a limiter, which reacts only to

loud signals.

2.2.1 Postfilters and Pre-post Filters

A postfilter only postprocesses the signal, producing a filtered approximation with
lower noise. A postfilter can be a linear filter, a nonlinear filter, or a serial com-
bination of linear and nonlinear filters. A pre-post filtering system performs both
prefiltering and postfiltering with the aim of producing a signal with no alterations,
while simultaneously reducing the noise. In a pre-post filtering system, saturation
effects are minimized by companding, where signal preemphasis and deemphasis are
performed before and after dynamic range compression and expansion, respectively.
Pre-post linear filters are coupled inverse filters obeying a frequency domain relation-
ship given by P(w) = 1/D(w), where P(w) is the preemphasis filter and D(w) is the
deemphasis postfilter. A pre-post nonlinear filter system contains three elements: a
linear pre-post filter pair, and a nonlinear postfilter. In an audio noise reduction con-
text, Figure 2.2 shows a simplified dbx pre-post filtering system. Figure 2.3 shows the
dbx and a more complex Dolby B single-signal recording preemphasis characteristics

at various input levels.

2.3 Lagrangian Optimization

The Lagrange multiplier method converts a constrained minimization problem into

an unconstrained minimization problem. Let us assume that we wish to minimize a



dB %
_> —
+ 12 -2 %fgﬂ
KHz IN_(dB)
A
Level
Sensor
dbx Preemphasis
+ dB
15 [T e

preemphasis

compression

Tape
Recorder

decompression

deemphasis

O O

Y

Y

|~

=

Additional
preemphasis

Figure 2.2: The dbz noise reduction system.

vu*

Dolby B-type Preemphasis

* WU = +4 dBm

. KHz
1:% T -12 : —
N (dB) -dB
A
Level
Sensor

20 100

Figure 2.3: dbz and Dolby B-type

500 1K
Frequency (Hz)

5K 10K 20K 20

100

500 1K

5K 10K

Frequency (Hz)

preemphasis characteristics.

20K



function d(-) subject to a constraint r(-) < Rg. In other words
min{d(xy1, x2,...,&,)} subject to r(x1,x2,...,2,) < Rop,m #n,mNn# o, (2.6)

where z,, and z,, are the independent variables of d(-) and r(-). A solution to (2.6)

above can be obtained by minimizing the unconstrained cost function J(\)
min{J(A\) = d(z1, 22, ..., &0) + Ar(z, 22, ..., 2,) ). (2.7)

By searching all the possible values of z,, and z, for an appropriate set of scalar
values of A, solutions to (2.7) provide solutions to (2.6). If both d(-) and r(-) are
multivariate monotonic functions of x,, and x, respectively, it is then possible to
perform a more efficient search instead of an exhaustive search. Even if d(-) is not
completely monotonic and has local minima, as to be discussed in Sections 5.3 and
6.1, is is still possible to perform a suboptimal search that will produce very good

results.

2.4 The JPEG Standard

The JPEG Standard defines four modes of operation: lossy sequential, progressive,
hierarchical and the lossless sequential modes. Images are coded into minimum coded
units or MCUs, which are multiples of 8 x8-pixel blocks. The MCUs usually contain
subsampled chrominance information and their data could also be interleaved. In the
sequential mode, each MCU is encoded in a single pass.

In the progressive mode, each pass encodes part of the DCT coefficients. There
are two ways to achieve this: spectral selection and successive approximation. In
the spectral selection, the zigzag array of DCT shown in Figure 2.4 is grouped into
bands. The lower bands are transmitted first; for example: (DC),(ACq1, AC4p), and
then higher bands follow: (AC3, AC11, ACy2), etc., until all the coefficients have been
transmitted. In the successive approximation mode, the most significant bits of each

DCT coefficient are sent first and then the least significant bits follow. Successive

10
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Figure 2.4: Zigzag reordering of DCT coefficients.

approximation displays better quality than spectral selection at comparable low bit
rates.

The hierarchical mode increases the spatial resolution at each pass. The first
pass of the smallest decimated image is either sequentially or progressively encoded.
Afterwards, the output of each hierarchical stage is interpolated and used to predict
the next increased resolution stage. A sequence of increased spatial resolution differ-
ential frames is computed and transmitted. At the decoder, the previous decimated
image is upsampled and then the decoded differential frame is added to the upsampled
prediction until the desired resolution is reached. This mode is also known as pyra-
midal coding. Finally, JPEG also has a lossless DPCM mode, which is summarized
in Table 2.1.

In this thesis, we are mainly concerned with the baseline form of the sequential
lossy mode. We now briefly discuss the main four JPEG subprocesses that are part

of the baseline system, as well as the sequential and hierarchical modes. These are
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‘ Selection Value ‘ Predictor z ‘

0 no prediction
Pixel Locations 1 a
2 b
Ak | L
a —c
1t 5 a+(b—c)/2
6 b+ (a—c)/2
7 (a+0)/2

Table 2.1: Lossless JPEG predictors.

DCT transformation, DCT coefficient quantization, run length encoding, and entropy

encoding.

DCT Transformation

JPEG uses separable Type-II forward and inverse DCT transforms [12]. The N = 8
forward DCT is

Xk, ky) = icuﬁ)c(k?) S 3" el ng) cos CrF DT

] =0 no =0

(2712 + 1)7Tkg
08 5
16 16
(2.8)

and the inverse DCT is

27: 27: C (k) C () X [k o] cos Lom T DR

TLJZO n2:0

(2712 + 1)7Tkg
08 5
16 16
(2.9)

1
z(ny,ny) = 1

where

C(ky), C(ky) = { vz for bk, =0 }
1 otherwise

JPEG does not mandate any specific DCT implementation. However, in order

to obtain better real-time response, many JPEG coders substitute equations (2.8)

and (2.9) with separable 1-D fast DCT transforms. For example, the Ligtenberg

and Vetterlli algorithm shown in Figure 2.5 requires only 13 multiplications and 29

additions. In this figure, Cy = cos(kn/16), S, = sin(kx/16), and the rotations R} are

12
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Figure 2.5: Flowgraph for fast DCT.

given by X = Crz+ Spy and Y = —Siz + Cry. Positive inputs to the rotation blocks
are labelled “+”. If the input is negative, the line is labelled with a “—”, as shown in
R_;. The 1JG Software Release 5b [4] uses a variant of this algorithm that requires
12 multiplications and 32 additions for the forward DCT [13]. On the other hand, a
straightforward implementation would require 64 multiplications and 56 additions for
each 1-D eight-point DCT. The inverse uses the Arai, Agui, and Nakajima’s scaled
DCT shown in Figure 4-8 of reference [3].

DCT Coefficient Quantization

JPEG provides two example DCT quantization tables, one for luminance and another
for chrominance (Table 2.2).  These values represent visibility thresholds for each
DCT basis function. When the tables are divided by two, the reconstructed images
are indistinguishable from the original. These tables are not optimized for any image
in particular. They are based on the Human Visual System (HVS) spatial frequency

respoinse.
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 27 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
7292 95 98 112 100 103 99

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Table 2.2: Luminance and chrominance quantization tables.

Run Length Coding

Once each block is DC level shifted, DCT transformed and quantized, the AC coet-
ficients are reordered in a zigzag fashion. DC coefficients are differentially encoded
based on the previous DC value. Low-frequency coefficients are likely to be nonzero,
while high-frequency coefficients are almost always zero. This creates long runs of
zero coeflicients that can be run length coded (RLC). RLC is an intermediate repre-

sentation before entropy coding is performed. RLC uses the symbols

Coeflicients Symbol-1 Symbol-2
AC (RUNLENGTH,SIZE) | (AMPLITUDE)
DC (SIZE) (AMPLITUDE)

For the baseline option, RUNLENGTH varies from 0..15. Runlengths greater than 15
are extended by the Symbol-1 value (15,0), which is itself interpreted as a runlength
of value 16. Thus, the maximum number of AC symbol-1 extensions is three. The
value (0,0) is interpreted as end-of-block (EOB). SIZE gives the size of AMPLITUDE
in bits for both AC and DC coefficients. AMPLITUDE is the amplitude of the

14



[SIZE[ AMPLITUDE |

0 0

1 11

2 3,2,2.3

3 ToAALT

4 15..-8,8..15

5 -31..-16,16..31

6 63..-32,32..63

7 127..-64,64..127

8 1255..-128,128..255
9 511..-256,256..511
10 | -1023.-512,512..1023
11 | -2047..-1024,1024..2047

Table 2.3: Baseline variable length integers.

nonzero AC coefficients including sign, or the differential DC coefficient, based on
the variable length integer (VLI) representation of Table 2.3. Symbols-1 are entropy
encoded, while Symbols-2 are appended as VLIs to their corresponding Symbol-1 for

transmission.

Entropy Coding

First-order entropy, or the average bit rate per information symbol, 1is defined
as H=—M pclog, ps for symbols x1,x,,..., 2y with probalities py,ps,...,pu.
JPEG uses two methods for entropy coding: Huffman [14] and arithmetic coding [15,
16]. The Huffman codes are created by initially ordering the symbol probabilities py in
decreasing order. Then, the two lowest-probability symbols are iteratively combined
into a single symbol to create a new set of decreasing-order probabilities until only two
symbols remain. A value of 0 is assigned to the higher probability symbol and a 1 to
the lower. The code is created by proceeding backwards, decomposing probabilities,
and appending 0 and 1 to the higher and lower decomposed probabilities, respectively.

Arithmetic coding does not require integer-length codes. Therefore, it can pro-
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vide slightly better compression than Huffman coding. Its basic idea is to represent
a symbol sequence x,, by a subinterval in the unit interval [0,1) based on symbol
probabilities p,, known to both coder and decoder, either as fixed probabilities or
by adaptation. Starting with the initial conditions n = 0,aq = 0,bo = 1, and the
Iy = [0,1) interval, iteratively subdivide the previous interval I,,_; into two subinter-

vals proportional to the new symbol probability having endpoints

Up_1 s, =0
a4, = , (2.10)
Gp_1 + Q(bn—l - an—l) ylp = 1

and

n—1 T bn—_ n— ;nZO
b, — -1+ qbp1 —an_1) sz 7 (2.11)

b1 i, =1

where ¢ is the probability of z, = 0 and (1 — ¢) is the probability of z, = 1. The
process is unambiguously reversible. If we know where the interval [, falls in the [0,1)
interval, we can trace back the whole sequence zg, 1, z,_1 by replicating the encoder’s

unit interval subdivision at the decoder until the terminator symbol is found.

2.4.1 Cross-block Smoothing

Section K.8 of the JPEG Standard provides a simple method to reduce block-to-block
discontinuities. Cross-block smoothing (CBS) predicts the first five lower-frequency
AC coefficients of each block by fitting a 2-D quadratic surface to a 3 x 3 array of
8 x 8-pixel blocks. By requiring that the mean of the predicted quadratic polynomial
over each block be equal to the original DC value of the block, after appropriate

scaling, quantization, and rounding, the AC coefficient prediction becomes

RQo1 + 36Quo(QDCs — QDCs)

QAC(H -

256Q0:
RQ10+ 36Qu0(QDC; — QDCY)
A =
©@ACw 256Q10
QACy, = RQ20 + 9Qu(QDCy + QDCs — 20 DC5) (2.12)
25620
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RQ11 + 5Quo((QDCy — QDC3) — (QDC7 — QDCy))

A =
QACH 35601
_ RQo2 + 9Qu(QDCy + QDCs — 2Q DC5)
QACy = _ )
256Q02

R is +128 for positive numerators and —128 for negative numerators. QAC,,,, is the

AC prediction for the current center block based on the 3 x 3 DC-coefficient array

DC, DC, DCs
DCy DCs DCg (2.13)
DC; DCs DCe.

The AC prediction results presented in this thesis were obtained from the IJG JPEG

Version 4a implementation [4].

2.4.2 Visibility of DCT Basis Functions

The visibility of the gray-scale digitized sampling structure has been addressed in
[17, 18, 19, 20]. The visibility of the DCT blocking structure has been treated in
[21, 22, 23, 24]. The Mannos’ contrast modulation transfer function (MTF), which is
based on extensive human visual system (HVS) psychovisual testing and modeling,

has the form

H(f) =2.6 (0.0192 + 0.144f) 014D (2.14)

This function has its peak value at f = 8 cycles/degree and assumes that the HVS is
isotropic. Another MTF, the Van Nes and Bouman, is similar to Mannos” MTF but
peaks between five and eight cycles/degree.

Based on their own MTF peaking at four cycles/degree, Chitprasert and Rao
proposed a weighted DCT scheme that retains sharp edges and smoothes DCT block-
ing. Their application of the MTF to the DCT weights the half-cycle DCT coefficients
co1 and ¢19 with unity weights, while the rest of the coefficients are weighted with
fractional weights according to their visibility. To justify this selection, assume a stan-

dard 0.28 mm pixel pitch display and a viewing distance of 1.0 m. This gives 0.13
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degrees/block or about eight blocks/degree and a sampling frequency of f; = 64 sam-
ples/degree. Since we need two adjacent blocks to create a full cycle with either ¢q; or
¢10, the lowest frequency cosine basis function has a frequency of four cycles/degree.
This result is very close to the peak sensitivity of the Mannos, Van Nes-Bouman, or
Chitprasert-Rao MTFs. The next lower frequency at 8 cycles/degree is obtained with
either cgy or ¢y, which is also very visible. Beyond cp3 or csg, we reach the -3 dB
point at 12 cycles/degree. Therefore, the most visible basis functions are the first six
in the DCT zigzag reordering. This also coincides with the AC blocking prediction
of Section 2.4.1.

Watson has proposed an algorithm that visually optimizes DCT quantization
tables for specific images [25]. Peterson, Ahumada, and Watson have developed
an improved DCT quantization algorithm that can predict visibility thresholds of
DCT coefficient quantization errors for RGB and Y C,C} color spaces [26]. These
algorithms, which are now in the public domain [27], take into consideration the in-
terdependencies among the DC'T coefficients, the effects of contrast masking, display
resolution and viewing distance. Using their models, the user can design ()-tables
that keep quantization errors below the visibility threshold for the given viewing con-
ditions. Similar independent work on perceptual optimization has also been reported

in [28].

2.4.3 Image-Adaptive DCT Coefficient Quantization

Wu and Gersho [29], Ratnakar and Livny [30] and separately, Crouse and Ramchan-
dran [31, 32] approached the DCT coefficient quantization optimization problem from
a different perspective. Instead of adapting the ()-table solely to the HVS response,
they optimize the Q)-table in a rate-distortion (R-D) sense.
Wu uses a greedy algorithm. Starting with large )-table step sizes, his algo-
rithm decreases one ()-table entry at a time so that the ratio of MSE distortion
AD

decrease to bit-rate increase T is maximized. Ratnakar’s RD-OPT algorithm uses
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dynamic programming (DP) to generate optimal quantization tables, while Crouse’s
algorithm uses Lagrange multipliersin conjunction with DP. Ratnakar’s DP algorithm
optimizes a @)-table dependent rate R(()) against a @)-table dependent MSE distor-
tion D(Q). His procedure consists of computing the least-distortion path as each
coefficient Q(k,¢q), k = 0..63,¢ = 1..MAXQ is added based on the optimality principle:
the least-distortion path to D(k,q) must be the least distortion path to D(k —1,¢’),
plus the least distortion path from D(k —1,¢’) to D(k, ¢), where again, ¢’ = 1..MAXQ.

Crouse and Ramchandran’s adaptive quantization (AQ) algorithm minimizes

the Lagrangian cost function
minlJ(\) = DT, Q) + \R(T, @, )], (2.15)

where A is a quality factor, T' is a set of 1 or 0 thresholding parameters that specify
which coefficients are zeroed-out, and H is a Huffman table. Since each DCT block is
independently coded, the algorithm uses DP to to minimize J(\) for each individual

block and then adds the individual costs. Crouse uses a MSE distortion metric.

2.4.4 Joint Optimization

Crouse and Ramchandran went a step further by performing joint optimization (JO)
of the ()-table, the coefficient thresholding parameters 7', and the customized Huffman
table. An iterative algorithm (i) optimizes J(A) as a function of @), with 7" and H
constant, based on some initial conditions. It then (ii) optimizes J(A) as a function
of T', with ) and H constant and (iii) finally optimizes J(\) as a function of H with
the previous computed ) and T'. It then returns to (i) until convergence is met, i.e.,
when J(A) change is minimal. For the purposes of this thesis, we refer to the two
versions of Crouse and Ramchandran’s algorithms as adaptive quantization (AQ) and

joint optimization (JO).
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2.5 Canny Edge Detectors

We utilize Canny edge detectors [33] to detect image edges using the public-domain
algorithm provided by Boe [34]. Canny edge detectors have three important charac-

teristics.

1. Good detection. This refers to the detector’s ability to mark real edges and
reject noise as an edge. It is equivalent to maximizing the signal-to-noise ratio

and is given by

1 G(=2) f(x)da|
no\/ [y f(2)da
where f(x) is the impulse response of the FIR filter, bounded by [-W,W], G(z)

SNR = (2.16)

is the edge, and n3 is the mean-squared noise amplitude per unit length.

2. Good localization. The detected center of an edge should be as close as

possible to the true center. Localization is measured by

T G/ (=) f(w)de|
no\/ S 2 (2)dz

LOC = (2.17)

3. Eliminate multiple responses. The edge detector should have no more than
one response to a single step in the vicinity of an edge. Multiple responses
can be minimized if the mean distance between the peaks of the filter’s noise

response are approximately the same width as the filter’s response to a step.

Canny found that a filter whose impulse response is the first derivative of the Gaussian
ﬂ:2

f(z) = —25e727 is a good edge detector that reasonably satisfies the above three

requirements. It also matches very closely the optimal step detector that he found

by numerical optimization.
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2.6 Vector Quantization

Vector quantization (VQ), like the DCT, is a block-based coding technique. However,
contrary to JPEG, VQ is asymmetrical, i.e., the encoder’s computational complexity
is much higher than the decoder’s complexity, which usually is a lookup table with
complexity O(N). A vector quantizer ) of size N and dimension k£ maps a point in
the k-dimensional Euclidean space RF into a finite set C containing N output code
vectors [35]. A vector quantizer matches its vector input to one of its predetermined
codewords. Its performance is usually measured by the squared error or Euclidean

distance
k
A0, X) = [X = X = Y [X: - K (2.13)
1=1

There are many types of vector quantizers. In this thesis, we attempt to enhance
the output images of two vector quantizers: the entropy-constrained residual vector
quantization (EC-RVQ) [36] and the conditional entropy-constrained residual vector
quantization (CEC-RVQ) [37]. A three-stage RV(Q encoder and decoder is shown in
Figure 2.6. RVQ), also known as multistage or cascaded VQ, generates its output as
the direct sum of the successive approximation reproduction from each stage. This
arrangement reduces the overall computational complexity and memory requirements
at the encoder since the codebook of each stage is smaller. However, the overall SNR
will be lower compared with a single stage VQ encoder. The entropy-constrained
qualification stems from the design of the encoder. It minimizes the entropy of the
entropy-coded codewords instead of the length in bits of the variable-rate codewords

of a pruned tree-structured vector quantizer (PTSVQ).

2.7 Projections Onto Convex Sets

Projection onto convex sets (POCS) is another recent technique employed for DCT
blocking reduction [42, 43, 44, 45]. In a convez set, a line connecting any two points in

the set is also a member of the set. Let S; and S; be two convex sets. Zakhor defined
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Figure 2.6: Residual vector quantizer encoder and decoder.

S1 as the set of bandlimited (lowpass filtered) signals and S5 as the set of images whose
DCT coefficients are bounded by their respective quantization intervals. In her POCS
algorithm, the first part of each iteration, performs (fixed) linear lowpass filtering to
remove the high-frequency blocking discontinuities. The second part of each iteration
recomputes the DCT for the filtered image and projects any coefficient outside its
quantization range back onto its appropriate range. Basically, the POCS algorithm
performs iterative projections between S; and Sy until it converges to a common
intersection point of the two sets. Su and Mersereau [46] substituted Zahkor’s 3 x 3
linear LPF constraint by a linear shift-variant adaptive filter F', which was selected
based on the 3 x 3 local pixel variance. In Section 4.4, we substitute the 3 x 3 filter
with ESAP, with the intention of not only reducing the blocking, but sharpening the

edges as well.

2.8 Subband Coders

A image subband coding (SBC) system consists of an analysis filter bank, a quantiza-
tion and coding system for the subbands, and a synthesis filter bank [38, 39, 40]. Fig-
ure 2.7(a) shows an example of a tree-structured two-stage four-band subband coder.
If the reconstructed image is identical to the input image, i.e., Z[n] = z[n — ng],

where ng is the system delay, then the filter bank exhibits perfect reconstruction.
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Figure 2.7: (a) A two-stage four-band subband coder. (b) One stage decomposition using
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In addition, if all the bands can be downsampled by a factor of two and the total
sampling rate of the input signal is equal to the total sampling rate of the subbands,
then the filter bank is critically down-sampled. Filter banks are usually implemented
using efficient quadrature mirror filters (QMF) with polyphase signal decomposition
to reduce the computational complexity, as shown in Figure 2.7(b).

In Section 4.1, we compare the PSNR results of the embedded zerotree wavelet
(EZW) algorithm [41] with ESAP. The EZW algorithm, is an octave-band tree-
structured filter bank similar to the one shown in Figure 2.8. It hierarchically de-
composes the lowpass band obtained from hg[r] into two subbands, while the high

frequency signal obtained from h;[n] is not further subdivided (diadic decomposition).

2.9 The MPEG Standard

The Moving Picture Expert Group (MPEG) Standard [47, 48] has many features in
common with national and international video-telephony [49, 50] and digital television
standards [51]. MPEG is an open, interoperable, scalable! system designed to support
a wide variety of video formats and compression rates. For instance, the MPEG-1
target rate is about 1.5 Mbps, which is comparable to VCR quality. On the other
hand, HDTV uses MPEG-2 video coding at a target rate of 20-40 Mbps, which is
equivalent to motion picture quality. Table 2.4 shows several MPEG formats. “I”
means interlaced, “NI” means noninterlaced, and “P” means progressive scans.
MPEG defines three types of pictures: intrapictures (1), predicted pictures (P),
and bidirectional predicted pictures (B). These pictures are assembled into group
of pictures (GOP) resulting in sequences such as IBBPBBPBBIBBP...,
etc. Intrapictures are basically stand-alone JPEG images. The P pictures can be
forward or backward predicted. The prediction is based on block matching of 16 x

16-pixel motion-compensated macroblocks. B frames, also referred to as motion-

1Scalability refers to the user’s ability to control the quality of the received image.
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Format Video Aspect Picture Rate Rate | Standard
Parameters | Ratio (Hz) (Mbps)

SIF 352 x 240 4:3 30NI 1.2-3 MPEG-1

CCIR 601 | 720 x 486 | 16:9 & 4:3 | 601 60P 30P 24P | 5-10 MPEG-2

EDTV 960 x 486 16:9 601 60P 30P 24P | 7-15 MPEG-2

HDTV 640 x 480 4:3 601 60P 30P 24P 20 MPEG-2

1920 x 1080 16:9 601 30P 24P 20-40 | MPEG-2

Table 2.4: MPEG formats and rates.

compensated interpolated pictures, offer better performance than P pictures since
the information is available from both “past” and “future” reference I frames. For P
and B frames, MPEG computes a differential image resulting from the error between
the motion-compensated prediction and a buffered original image. This prediction is
DCT transformed, run-length and entropy encoded and then multiplexed along with
the entropy-coded motion vectors and other overhead information such as quantizer
step sizes. MPEG monitors a transmission buffer whose fullness is used to adjust the

DCT quantizer step sizes.

2.10 Synthetic Aperture Radar

Synthetic Aperture Radar (SAR) imagery [71, 72, 73] is used for applications such as
earth-resource mapping and military reconnaissance and targeting operations. These
applications usually require imaging of broad areas at high spatial resolutions. In
some instances, it is not possible to obtain this information in the visible spectrum.
On the other hand, SAR is capable of imaging during night, day or inclement weather.

Some of SAR’s uses include: sea ice monitoring, cartography, surface defor-
mation detection, mineral exploration, autonomous navigation and guidance, glacier
monitoring, crop production forecast, forest cover mapping, foliage and ground pene-

tration, ocean wave spectra, urban planning, coastal erosion surveillance and disaster
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Band | Wavelenghth
(cm)

UHF 31-240

L 13-30

S 8-15

C 4-8

X 2.5-4

Ku 1.7-2.5

Ka 0.75-1.2

Table 2.5: Synthetic Aperture Radar bands.

monitoring. This includes forest fires, floods, volcanic eruptions and oil spills. SAR
imaging complements other imaging systems in the infrared, visible and ultraviolet
wavelengths.

The radar term itself is derived from the World War II phrase “radio detection
and ranging.” SAR operating radio wavelengths range from a few centimeters to about
two meters. The typical radar bands are shown in Table 2.5. These wavelengths cover
a spectrum ranging from approximately 1 GHz to about 25 GHz. An overview of how
SAR works and a brief tutorial on SAR image interpretation is offered below.

Typically, SAR imaging is conducted from an aircraft or an orbiting satellite
such as LANDSAT or AVHRR. The 2-D SAR image is perpendicular to the aircraft
velocity as shown in Figure 2.9. The range or along track dimension is a measure of
the line-of-sight distance from the radar on the aircraft to the observed object. The
SAR range is obtained by measuring the time delay from the transmission of a pulse
to receiving the echo of that pulse from a target. Range resolution is obtained from
the width of the transmitted pulse; the narrower the pulses, the finer the achievable
range resolution. Typical SAR slant angles vary from 15 to 45 degrees.

The azimuth or cross track dimension is perpendicular to the range. One of the
advantages of SAR imaging is its ability to produce fine azimuth resolution, which is
otherwise only possible by using physically large antennas or with smaller antennas

compensated by other methods. The large antenna is needed to focus the transmitted
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Figure 2.9: SAR data acquisition.
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and received energy into a sharp beam to obtain the fine azimuth resolution. This
physical phenomenon is similar to fine resolution in telescopes. These telescopes re-
quire large aperture mirrors or lenses to obtain fine imaging resolution. Given the
relatively low operating radio frequencies for typical SAR systems in the electromag-
netic spectrum, in order to obtain resolutions in the order of several meters it would be
necessary to use an antenna that could be physically larger than the aircraft carrying
it. Typical antenna lengths of several hundred meters might be required. An airborne
radar can collect pulse echoes while flying several hundred meters and then process
the data to model a physically longer antenna. The distance flown while collecting
pulse reflections to synthesize the antenna is termed the synthetic aperture. SAR
can achieve finer azimuth resolution than what is physically possible from a smaller
antenna due to the synthetic aperture and its resulting narrow synthetic beamwidth.

SAR’s fine azimuth resolution can also be explained through doppler frequency
shifting. Objects ahead of the aircraft produce positive doppler offsets while objects
behind produce negative offsets. The doppler frequency of the echoes along the flight
path provides information about an object’s position. Once the aircraft has flown the
equivalent distance corresponding to the synthetic aperture, pulse echoes are resolved
into doppler frequency components. An object’s doppler frequency maps its azimuth
position.

In practice, the transmission of short pulses to increase the range resolution is
not feasible. Instead, SAR transmits longer pulses to decrease the transmitter’s peak
power requirements. This increases the computational load to determine the actual
range. There are other factors that increase the computational complexity as well.
For instance, azimuth resolution is affected by a target’s range. The range to each
cell on the synthetic aperture varies along the length of the synthetic aperture. There
are also interdependencies between the range an azimuth that need to be decoupled
prior to synthetic image generation.

There are a few guidelines for interpreting SAR images. In general black areas
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are associated with calm water or smooth surfaces that reflect away the incident
pulses. Wet surfaces show more brightly than dry surfaces. Rough water shows
up better than calm water, particularly if the wind-induced waves coincide with the
wavelength of the incident radar signal. Mountains appear bright on the incident side
and dim on the opposite side.

Backscatter is a function of the wavelength used. For example leaves and bushes
are better shown at a wavelength of a few centimeters, say for instance the Ku band,
than at a wavelength of one meter in the UHF band. UHF SAR wavelength is thus
more appropriate for mapping larger objects such as geological formations. Human-
made objects reflect the incident pulses very well, therefore they appear brighter than
natural objects. Sharp corners in buildings, bridges and industrial complexes reflect
extremely well, therefore these structure are clearly visible in the processed images.

In Section 4.9 we process a sample SAR image of the “Moving and Stationary
Target Acquisition and Recognition” (MSTAR) Program taken at the Redstone Ar-
senal, Huntsville, Alabama by the Sandia National Laboratory [71] in September,
1995. These images used an X-band sensor operating at a 30 cm resolution with a 15

degree depression.
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CHAPTER 3

The Estimated Spectrum Adaptive
Postfilter

The ESAP algorithm extension to the baseline JPEG coder is shown in Figure 3.1. In
the block diagram z[n] is the gray-scale input image, X;(k) are the DCT coefficients
of the transformed image, #[n] is the decoded JPEG image and Z[n] is the postfil-
tered image. The significance of the error signal e(o, f,¢,w) is further explained in
Section 3.4.

When preprocessing, to obtain better visual quality and a lower MSE, ESAP
uses image-adaptive DCT quantization tables. This is not strictly necessary, but
by doing so, we obtain about 1-2 dB PSNR improvement without increasing the bit
rate. In postprocessing, ESAP estimates 2-D pixel-adaptive bandwidths directly from
the dequantized DCT coefficients without incurring any additional side information.
The postprocessing usually adds another 1 dB of improvement. The algorithm com-
bines the pixel-adaptive bandwidths with directional Canny edge detectors to control
a 2-D spatially-adaptive non-linear postfilter Ay [n] that significantly reduces DCT
blocking artifacts. The overhead required to transmit the MMSE postfilter param-
eters amounts to only two to four bytes. In our experiments, ESAP improved the
PSNR up to 3.23 dB over baseline JPEG, yielding subjective improvement as well
(see Section 4.1).

ESAP takes into consideration the HVS spatial frequency masking characteris-
tics. Based on the HVS tolerance to quantization errors in the high-frequency regions,
ESAP performs directional filtering parallel to the edges and no filtering across the

edges, subject to filter design constraints. The low-frequency non-edge regions are
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Figure 3.1: ESAP algorithm extension to baseline JPEG.
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postfiltered with separable non-directional adaptive lowpass filters to minimize block-
ing and restore some of the image’s natural smoothness. The edges are postfiltered
with nonseparable directional lowpass filters. The filter’s directionality helps to re-
duce the blocking along the local edge without significantly reducing the perceived
fidelity across the edge, where high-frequency quantization discontinuity errors are
masked by the HVS perception of the edge itself.

So far, we have mentioned several algorithms to reduce the DCT blocking dis-
tortion. Additionally, [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63] attempted other
methods with varying degrees of success. In [64, 65, 66], we proposed a solution to the
DCT blocking limitation based on a frequency domain analysis. In the next section,

we explain the Fourier transform foundation of the ESAP algorithm.

3.1 Fourier Transform Analysis of the DCT Basis
Functions

Each DCT basis function has a Fourier transform whose waveform can be explained
by the modulation theorem. In the 1-D case, this takes the form

o[n)wn] <o %X(w) DW (). (3.1)
Making reference to Figure 3.2, observe that multiplication of a cosine function f;[n]
by an eight-point rectangular window w(n| in the time domain is equivalent to the
circular convolution of a sinc-shaped rectangular window transform W (w) with an
ideal pair of impulses 76(w + w;) resulting in the |F;(w)| waveforms shown. Analysis
of the discrete-time Fourier transform of each of the DCT basis functions [67], in
conjunction with Figure 3.2, indicates that the ripples or sidelobes of the spectrum
of each DCT basis function, shown as dashed lines, are the frequency representation
of the DCT blocking at any particular spatial frequency. The window’s width de-

termines the main lobe frequency resolution and simultaneously introduces ripples.
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‘ Highest DCT Coeff. Present | Normalized 1-D Bandwidth ‘

Co 0.1257
5] 0.2507
&) 0.3757
c3 0.5007
Cq 0.6257
Cs 0.7507
Cs 0.8757
cr 1.0%

Table 3.1: Coeflicient-block bandwidth relationship.

The ripples represent the out-of-band DCT blocking, while the main lobes contain the
dominant in-band signal. If we neglect aliasing, then reduction of the DCT blocking is
obtained by lowpass filtering the out-of-band sidelobes starting at a cutoff frequency
w. determined by the highest-frequency nonzero DCT coefficient. This analysis is
readily extensible to the 2-D case using a separable DCT. Figure 3.2 shows the ideal
lowpass filters associated with each DCT basis function and Table 3.1 lists their cutoff
frequencies.

Using Table 3.1, each block’s bandwidth is found by inspecting the highest 2-D
nonzero coefficient. Intermediate zero coefficients are neglected since they do not de-
termine the block’s bandwidth. For example, if the block’s highest coefficient is cys,
then the vertical bandwidth is 0.3757 and the horizontal bandwidth is 0.750x. The
2-D local bandwidth is centered in the middle of the block. This analysis generates
two 64 x 64 bandwidth images from a 512 x 512 image. These are the non-interpolated
vertical frequency (NIVF) image [Figure 3.3(a)] and the non-interpolated horizontal
frequency (NIHF) image [Figure 3.3(c)]. In each of these, the gray level is proportional
to the local horizontal or vertical bandwidth. Each NIF is subsequently 1:8 interpo-
lated to obtain two 512 x 512 interpolated frequency (IF) images. Figures 3.3(b) and
(d) show the interpolated vertical frequency (IVF) and the interpolated horizontal
frequency (IHF), respectively. To properly filter the image boundaries, we need to

symmetrically extend or replicate the IF images w(m) and the decoded image z[n].
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Figure 3.2: DCT basis functions f;[n], Fourier transforms |F;(w)|, and associated LPFs.
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(a) 64 x 64 NIVF

(b) 512 x 512 IVF

(c) 64 x 64 NIHF

(d) 512 x 512 IHF

Figure 3.3: Non-interpolated and interpolated frequency images.

35



This extends the decoded image by one MCU block on each side. For example, a
512 x 512 image increases to 528 x 528 pixels and the NIF images increase from
64 x 64 to 66 x 66 pixels. After the adaptive convolution is performed, the sym-
metrically extended blocks and NIF images serve no additional purpose and can be

cleared.

3.2 Non-directional Filtering

ESAP smoothes the current pixel of the decoded image &[my, m;] with a 2-D adaptive
cutoff lowpass FIR Hamming filter A, ,[n1,n2] which can be directional or nondi-
rectional. The filter’s directionality is determined from the output of a Canny edge
detector applied to the decoded image. The horizontal and vertical bandwidths are
obtained from the IHF and IVF images, respectively. EDGE and NON-EDGE pixels

are found by the following rule:

/* Classify EDGE & NON-EDGE pixels */

for (n1=0; ni<N; ni++)
for (n2=0; n2<N; n2++)
if (canny_mag[ni][n2] > T && sqrt(Bwi[nl] [n2]*Bwi[ni][n2] +
Bw2[ni] [n2]*Bw2[ni1] [n2]) > F)

edge[n1] [n2] = TRUE;
else
edge[n1] [n2] = FALSE;

T is a Canny edge magnitude threshold, F is a normalized 2-D frequency magnitude
threshold, and Bw are IFs!. In other words, if a pixel is an EDGE in both the spatial
domain and the frequency domain, then the pixel is declared a true image EDGE and
it is directionally postfiltered. If a pixel’s Canny magnitude is < T but its 2-D band-
width magnitude is > F, then it is declared a TEXTURE pixel and filtered with an
impulse 6[n1, ny]. Otherwise, the NON-EDGE pixel is nondirectionally postfiltered.

In Figure 3.1, we use the equivalent notation ¢, f and w[m] for T, F and Bw respectively. The
parameters o and w are explained in Section 3.4.
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Figure 3.4: Determination of rotated bandwidths wg[m].

3.3 Directional Filtering

Once we have determined the angular orientation 8 of an edge passing through a pixel
#[m] using the Canny edge detector, we can compute a rotated bandwidth wys[m] from
the original rectangular bandwidth estimation w[m)]. Let us look at Figure 3.4, which
describes a typical block with a substantial amount of diagonal frequencies.

Observe that the magnitude of the highest 2-D frequency in the frequency plane

corresponds to the perpendicular cutoff frequency across the edge and is given by

W,.,, = min(1.07, /w2 + w2 7). (3.2)

To exploit the HVS high-frequency masking characteristics, we fix w,,,, = 7. The
cutoff frequency parallel to the edge is approximately the lower of the vertical (w.,)

or horizontal (w.,) DCT bandwidths:
Wepa, A min(we, ,we, ). (3.3)
Now, a noncausal 2-D rotated Hamming filter can be expressed as

h@ I:wcpar ? wcperp ? i ? n2] =

Pepa, [/ 121 + 123 sin(0 + tan™" E)] P, [\ 11 + 13 cos(6 + tan™" E)], (3.4)

ny ny
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where 6§ is measured counterclockwise with respect to the horizontal axis ny (or ws)

and the 1-D Hamming window LPF is given by

infes, )
ho,[n] = W [0.54 — 0.46 cos %} 0<n<M. (3.5)

For NON-EDGE pixels, the above expression simplifies to the separable filter
h[wCuwanhn?] = hwcl [nl] thQ [nQ] (36)

The nondirectional 1-D filters of equation (3.6) are precomputed at program initial-
ization and accessed as a lookup table during execution. ESAP’s computational com-
plexity is approximately O((M N)?) multiplications and additions for the estimated
frequency interpolation and O((M N)?) additions, O(N*M?/4) multiplications for the
adaptive convolution of each image (N x N is the image size and M x M is the filter
size).

Equations (3.2) and (3.3), and the model of Figure 3.4, are based on actual sep-
arable bandwidth measurements obtained from the quantized DCT coefficients of the
rotated edges of an image, as explained in Section 3.1. Please also note that for both
directional and nondirectional filtering, the pixel-adaptive nature of the IF images
forces us to use spatially-adaptive convolution or equivalently, a linear combiner. In
other words, the actual implementation cannot use frequency-domain filtering. Nev-
ertheless, the analysis presented in Section 3.1 is useful in determining the adaptive
filter’s 2-D bandwidth, although the filtering operation is actually performed in the

spatial domain.

3.4 MMSE Optimality of ESAP

3.4.1 Definitions

In reference to Figure 3.1 let
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o = Canny edge detector’s Gaussian standard deviation sigma parameter (Sec-

tion 2.5), usually in the range [0.5..2.5]. This controls the region of support
of the detector.
t = Canny edge detector’s edge strength threshold, [0..255] range.

f = Magnitude of ESAP’s DCT frequency bandwidth, [0.0..1/2]7 range. In con-
junction with ¢, this classifies pixels into three categories: EDGE, NON-
EDGE or TEXTURE.

w = Directional filter region of support wxw in pixels, w = [2..16]. Nondirectional

filters have a fixed order of 17x 17 pixels to cover four contiguous DCT blocks.
For example, these parameters can be quantized and packed in three bytes to represent

the MMSE adaptive overhead information as follows:

o 6 bits = [0.04, 0.08, ..., 2.56] tspis = [0, 1, ..., 255]
f 7w = [0.011,0.022, ..., 1.419] W s s = (2,4, ..., 16].

In our case, the MSE p, or its logarithmic inverse, the PSNR p = 10log %, are
both scalar multivariate functions of the arbitrary filter coefficients hm[n] (please
refer to Section 2.1). In turn, these filter coefficients, of up to 17 x 17 support in
this algorithm, are a vector function of the 4-tuple z = (0,1, f,w), in addition to the

pixel’s 2-D coordinate m. In expanded notation

p= f(z[n], #[n], hmz[n]). (3.7)

By controlling z, we are indeed controlling the adaptive filter coefficients hm z[n].
Since g is a quadratic MSE function of hmz[n] with a unique minimum, then by
inference, g must also be a quadratic function of z. Consequently, the MMSE p(z*)
has an optimal logarithmic inverse maximum PSNR p(z*). We want to maximize the
PSNR (the MSE variable p(m, o, ¢, f, w) could have been minimized as well), therefore

we choose to maximize the variable p(m,o,t, f,w) by performing a steepest-ascent

gradient search.
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Figure 3.5: Inverted parabola PSNR analogy.

3.4.2 Graphical Interpretation

Consider the 2-D inverted parabola g(z,y) = 200 — (z* + y?) in Figure 3.5. If we slice
g with a plane z = z; [or y = y;], we always obtain a 1-D inverted parabola with a
maximum ¢(z;,0) [or ¢(0,y;).] The 2-D absolute maximum is the maximum of all the
1-D maxima — ¢(0,0) in this example.

We can extrapolate this heuristic to the 4-D PSNR surface p(o,t, f,w), which
has been evaluated for all square errors e*lm). For each pair (o, ;), if all the resulting
2-D surfaces p(o;,t;, f,w) are downward monotonic for all possible (f,w) points in
the 2-D region of support Ry = {F' x W}, then there exists a maximum point p(z*) =
p(o*,t*, f*,w*), which is the maximum of all the 2-D maxima p(o;,t;, f*,m*) over
R;y. Figure 3.6 shows ESAP’s behavior through two downward-monotonic surface
examples obtained from experimental data of the “Lena” image compressed at 0.25
BPP. The next section—Matrix Analysis, presents an alternative optional explanation

of the MMSE optimality of the algorithm.
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Figure 3.6: ESAP monotonic PSNR surfaces p(o;,¢;, f, w).
3.4.3 Matrix Analysis

Another approach that could be used to verify ESAP’s optimality is based on matrix

analysis [68]. To maximize p, it is necessary that

dp/do
dp/ot
dp/0z = / =0. (3.8)
dp/df
Jdp/ow
That is, p has to attain a stationary value z* = (o*,t*, f*,w*). Also, the square
symmetric Hesstan matrix
#p  8%p 9% %p
do2 dodt dedf  dodw
Ap ?p % p %
_ _afloP r_ | B8 B Btaf  Bidw .
H=-0 (az) 0z vy 2y %y % (3.9)
5fdc o9fot  9f2  Bfow
9%p 9%p 92p 82_p *
Swdo Bwdi Dwdf  Ow? Z

has to be positive-definite satisfying z* above. It H is positive-semidefinite, then z*

is a weak maximum.
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Since equations (3.8) and (3.9) operate on discrete values, they can be approxi-

mated by partial difference equations. Therefore,

Op/0z ~

p(o,t, f,w) —plo = 1,t, f,w) p(o) —p(o — 1)
p(o,t, f,w) — p(ot Lfw) [al pO-pt=1 | _, (3.10)
p(o,t, f,w) — p(o, ,w) p(f) —p(f—1)
p(o,t, f,w)—p(o,t f, w—1) p(w) — p(w — 1)

For notational convenience, the variables not shown remain constant. H now becomes

p(o) = 2p(oc — 1) + p(o — 2)

plo,t) —plo —1,t) = p(o,t = 1)+ p(o -1, 1)
plo, f) =ple=1.f)=plo, f =) +ple=1,f=1)
p(o,w) —ploc — L, w)—plo,w—1)+plc —1,w—1)
p(o,t) —ploc—1,t) —p(o,t — 1)+ ploc —1,t — 1)
p(t) = 2p(t — 1) + p(t - 2)

p(t, f)—pt—1f)—pt, f-1)+p(t—1,f-1)
p(t,w) = p(t =1, w) —p(t,w— 1)+ p(t — 1, w—1)

(3.11)

plo, f)—ple=1,f)—plo, f=1)+p(c —1,f-1)
p(t, f)—pt=1,7)—pt,f =1 +pt-11-1)
p(f) =2p(f = 1) +p(f - 2)

p(fiw)—p(f = Lw)—p(fiw—1)+p(f —1Lw-1)
p(o,w) —plc — 1, w)—plo,w—1)+ p(c — 1l,w—1)

p(t,w) —p(t — Lw) —p(t,w—1)+p(t—1,w—1)
p(f,w) —p(f =1L, w) —p(fw—1)+p(f - Lw—1)
p(w) — 2p(w — 1) + p(w — 2)

For z* to be a maximum, H has to be positive-definite or at least positive-semidefinite.

It is a well-known fact that the MSE is a hyperparaboloid function of its adaptive

filter coefficients, and indirectly of the z variable, if p(z) is

a stationary signal (i.e.

not affected by quantization, etc.) Therefore, it is not really necessary to implement

a proof based on a numeric implementation of (3.10) and (3.11) above. However, for

completeness, we outline the numerical proof algorithm below.

42



The algorithm would first find all the 4-D stationary points ps in the region of
support Ry = {S x T x F x W} that satisfy (3.10). Secondly, it would compute H
using (3.11) for each ps. Finally, it would determine four eigenvalues X 1 234 and four

eigenvectors u 1234 for each ps by solving the 4 x 4 characteristic equation
(H-I)U = 0. (3.12)

The 4-D point that satisfies (3.10) and whose eigenvalues A are all positive, is the

optimal maximum point p(z*).

3.5 O((2D - 1)N) ESAP 4-D Fast Optimal Search

There are N* PSNR points p in a 4-D hyperspace region of support Ry = {Sx T x F x
W}, where S, T, F, and W represent N equally spaced positive coordinates on each
Cartesian axis of the z space. Since the 4-D ESAP quadratic surface p is downward
monotonic, it is unnecessary to use all the points in R4. An optimal search can be
performed to reduce the exhaustive search complexity from O(N?) to a worst case
diagonal or lateral search of order O( [%1 N), where D is the number of dimensions
in R. This order represents the neighboring points around the 4-D diagonal or a
coordinate axis. For example, if N=10 and D=4, then the exhaustive search requires
O(10*) or 10,000 postfiltering operations. The optimal 4-D full search would only
require about O([%} 10) = 410 postfilterings. At each step, we would compute an
average of [%1 new points since half of those were already computed in the previous
iteration.

We can further reduce the number of postfiltering operations to O((2D — 1)N)
and still obtain optimal results if we use the two nearest neighboring points on each
axis parallel to S, T, F', and W, instead of the complete D-dimensional neighborhood
of a point. This is equivalent to searching only those hypercube points that intersect
perpendicularly to the reference axes, plus the origin. In the case of R4 with N=10,

we can converge to the optimal p(z*) in O((2(4) — 1)10) = 70 operations, a reduction
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greater than two orders of magnitude with respect to an exhaustive search.

Most of the z* search results to be presented in Chapter 4 were obtained by
nested for-loop exhaustive searches that ran from hours to days on a SPARCStation 2
computer. However, when we used the two-nearest neighbors on each axis O((2D —
1)N) heuristic described above, we were able to converge to a MMSE solution in less

than an hour, given proper initial conditions (o,,1,, fo, w,).
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CHAPTER 4

Postfiltering Methods

This chapter presents several applications of the ESAP algorithm discussed in Chap-
ter 3 to various block-based image coders. These coders include: monochrome and
color JPEG, the lapped orthogonal transform (LOT), vector quantizers (VQ), and
projections onto convex sets (POCS). For JPEG we consider both, default DCT coeffi-
cient quantization and image-adaptive DCT coefficient quantization. Image-adaptive
quantization requires a preprocessing pass to optimize the rate-distortion product at
the desired bit rate prior to image encoding. Additionally, in this chapter we explore
synthetic aperture radar (SAR) image postfiltering with default and image-adaptive
coefficient quantization. Within the SAR section, we also consider the effect of a

weighted mean square error norm on the perceptual quality of the decoded image.

4.1 ESAP Enhancement of Baseline JPEG, AQ
and JO Images.

In this section, we compare the objective performance of several versions of the JPEG-
ESAP algorithm. We use two PSNR references: JPEG and the embedded zerotree
wavelet (EZW) [41]. We also show the subjective improvement, including edge preser-
vation with blocking reduction for the Lena and Barbara images. Figure 4.1(a) shows
a baseline JPEG image of Lena at 0.25 BPP, 31.68 dB PSNR and Figure 4.1(b) shows
its corresponding adaptive quantization (AQ-ESAP) image at 33.01 dB PSNR. Sim-
ilarly, Figure 4.1(c) is a baseline JPEG Barbara image at 0.5 BPP, 28.27 dB PSNR
and Figure 4.1(d) is its jointly optimized (JO-ESAP) version at 31.23 dB PSNR.



(a) JPEG Lena @ 0.25 BPP, 31.68 dB. (b) AQ-ESAP Lena @ 0.25 BPP, 33.01 dB.

(c) JPEG Barbara @ 0.5 BPP, 28.27 dB. (d) JO-ESAP Barbara @ 0.5 BPP, 31.23 dB.

Figure 4.1: Segments of the 512 x 512 JPEG, AQ-ESAP and JO-ESAP images.
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[BPP [JPEG | CBS | ESAP | AQ [AQ-ESAP | JO |JO-ESAP [ EZW

0.25
0.50
1.00

31.68
34.90
37.96

31.64
34.87
37.95

32.76
35.59
38.37

31.88
35.48
38.88

33.01
36.23
39.23

32.34
35.96

39.58

33.07
36.45
39.61

33.17
36.28
39.55

Table 4.1: PSNRs for 512 x 512 Lena image.

| BPP | Acgs | Auppa—psap | Aug | Aug-rsar | Aso | Ajo_psap | Apzw

0.25
0.50
1.00

-0.04
-0.03
-0.01

1.08
0.69
0.41

0.20
0.58
0.92

1.33
1.33
1.27

0.66
1.06
1.62

1.39
1.55
1.65

1.49
1.38
1.59

Table 4.2: PSNR improvement over baseline JPEG for the 512 x 512 Lena image.

[BPP [JPEG | CBS | ESAP | AQ [AQ-ESAP | JO | JO-ESAP [ EZW

0.25
0.50
1.00

25.02
28.27
33.10

25.01
28.25
33.09

25.79
29.44
34.01

26.02
29.99
35.22

26.96
31.03
35.84

26.66
30.63
35.94

27.05
31.23
36.33

26.77
30.53
35.14

Table 4.3: PSNRs for 512 x 512 Barbara image.

| BPP | Acgs | Auppa_psap | Aag | Aug-psar | Aso | Ajo_psap | Apzw

0.25
0.50
1.00

-0.01
-0.02
-0.01

0.77
1.17
0.91

1.00
1.72
2.12

1.94
2.76
2.74

1.64
2.36
2.84

2.03
2.96
3.23

1.75
2.26
2.04

Table 4.4: PSNR improvement over baseline JPEG for the 512 x 512 Barbara image.
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Tables 4.1, 4.2, 4.3, and 4.4 summarize the decibel (dB) PSNR comparative results.

Let us take for example the 512 x 512 Lena image at 0.25 BPP. Referring to the
first two lines of Tables 4.1 and 4.2, we observe that the JPEG’s crossblock smoothing
(CBS) reduces the PSNR by 0.04 dB. After applying ESAP to the default quantized
JPEG image we obtain a 1.08 dB improvement. The postfiltering improvement when
we preprocess the image to obtain an image-adaptive Q-table and postprocess it with
ESAP is shown under the A 4g_ggap. For this case it is 1.33 dB. To conclude this ex-
ample, preprocessing the image to obtain a joint-optimized Q-table followed by ESAP
postprocessing generates an improvement A jo_gsap of 1.39 dB. For comparison, the

last column shows the EZW Apgzw improvement. For this case it is 1.49 dB.

4.2 ESAP and the Lapped Orthogonal Transform

In reference [64], we slightly modified ESAP to postprocess lapped orthogonal trans-
form (LOT) images [54]. A comparison of Figures 4.2(a) and (b) shows that the main
lobe’s in-band frequency selectivity of the LOT basis functions is very similar to that
of the DCT. Therefore, LOT images can be postfiltered exactly in the same manner
the DCT decoded image is postfiltered, as explained in Section 3.1. After postfil-
tering a 256 x 256 LOT Lena image coded at 0.25 BPP and 0.5 BPP, we obtained
approximately 0.9 dB PSNR gain for both cases. Two example images are listed in
Appendix A.

4.3 Extension of ESAP to VQ Images

We also explicitly generated the DCT coefficients for the V(Q images. As shown
in Table 4.5, we obtained a 0.45 dB PSNR improvement over the V( images after
postfiltering. Please observe that the JPEG objective quality is better than VQ,
even after ESAP postfiltering. Subjectively, the JPEG images are better than their
ECRVQ-ESAP counterparts too. The results for 1.0 BPP were not computed because

48



" ! A%
) 1 \
[ 1
N\
I I P I Y
2— Y oA 2— ¢ Tt \ [ —
\ /2 /AR ) ) : 1 P
N A ! o o Ao L |
1 \ ! \ i \ i \ 1 \ \ 1 \ f \
I \ ! ! ‘o 1 \ b ! ! ! \ ! 1 1 !
I \ ! \ ! \ ' \ a ! ! h \ ! \ 1 !
| { ! \ [ i ( \ [ | \ v \ | !
i | |
| \ { \ d i I \ ! | \ / \ |
| \ ! i i \ | \ I Vi ! \ Y | h \
/ I \
171 \ ! ! ! ! I — 17’ ! \ ! \ | —
1 \ ! ! ! [ I \ ! ! ) - \ 1 !
| \ ! \ 7 \ ! \ 1 1 Iy v - = 1
L I, | I ! { \
| AN ' N \ I [ Vi \ \ |
RN A ) rn ! \ ! o !
| N \ \ I ) Vi !
| \ Ay \\\ /;/ vl ¥ N | 1 [ v | y\
! ‘i X /! N 1 ! VR n e !
1 W n Ly W N 7 ) [\ ! | Y IR 2o # A .
. 1 L \ Y] [Tl \ 3 2y y. R WA PaN
0 ) V. N Y \ Y VAR AN 0 y = £ 7 ; N 5 2\

Figure 4.2: Magnitude of the Fourier transforms of the (a) DCT and (b) LOT.

the VQ codebook generation at that rate is impractical. Please refer to Appendix A

for the example images corresponding to this section.

4.4 ESAP and POCS

In our implementation of POCS, we substituted the lowpass filter convex set S; with
the ESAP constraint set. Furthermore, we set all the DCT quantization step sizes
to “1” within the original bounds of the DCT quantization interval S; convex set.
A rather interesting result was the sharpening of the edges, but only at the expense
of a lower PSNR. For instance, Figure 4.3 shows the 0.25 BPP POCS-ESAP image
after 13 iterations. The PSNR dropped to 29.66 dB, less than the original baseline
JPEG’s 31.68 dB at that bit rate. Nevertheless, the edges were sharper and there
was no visible blocking. Going beyond the 13" iteration over-emphasizes the edges
and any perceptual improvement gain begins to be lost.

Figure 4.4 shows the flowchart of the POCS-ESAP algorithm. To start the POCS
iterative process, the iteration z is set to 1. An initial ESAP postfiltered image z; is
then JPEG compressed into )A(Z-, subsequently JPEG decompressed into z; and then
ESAP postfiltered to obtain ;. ESAP constitutes our S; convex set. The algorithm

then performs a convergence test between the current postfiltered image z; and the
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| BPP | JPEG | ECRVQ | ECRVQ-ESAP | Agcrvg | Apsar | Arorar |

0.25 | 31.68 | 29.28 29.72 240 | 044 | -1.96
0.50 | 34.90 | 33.44 33.91 146 | 047 | -0.99
1.00 | 37.96 | N/A N/A

Table 4.5: PSNRs for 512 x 512 Lena ECRV(Q) image.

previous iteration postfiltered image #;_;. If the MSE is less than some specified
threshold ¢, then STOP. Convergence has been attained. Otherwise, increment the
iteration counter (¢ = ¢ 4 1), recompress the image with a unity @-table (all 1’s)
to obtain X;, and decompress the image also using a unity ()-table to obtain )AN(Z
Our convex set S, is the set of the original quantization bounds computed in the first
iteration and it is denoted by X, to the right of the sample-and-hold switch “sw”. The
Py (+) quantization projection block brings back into the initial quantization range any
coefficient that falls outside the range. The resulting projected image transform X
is inverse transformed (IDCT) and fed back into the top of the loop as a new z; to

begin the next iteration.

4.5 Application of ESAP to SBC — Explicit DCT
Coefficient Generation

In this section we report on explicit DCT coefficient generation to postfilter SBC
decoded images. In Chapter 6 we will discuss how the w[m] pixel-adaptive bandwidths
are implicitly generated directly from the SBC coefficients.

The explicit coefficient generation method applies JPEG to synthesized subband
coded images in order to explicitly generate the DCT coefficients necessary to drive
ESAP’s adaptive postfilter. Please note that unlike the DCT and the LOT, whose
“pixel bandwidths” were directly estimated from the transform coefficients, we did

not estimate the pixel bandwidths directly from the subbands in this section. After

20



Figure 4.3: Resulting POCS-ESAP image at the 13" iteration.

postprocessing, we obtained improvements of 0.14 and 0.11 dB PSNR over the 0.25
and 0.5 BPP SBC Lena images, respectively, as shown in Table 4.6. We could not
improve the 1.0 BPP SBC PSNR, but we did not diminish its quality either. The
0.25 BPP image was coded with vector SBC CEC-RV(Q) while the 0.5 and 1.0 BPP
images used scalar SBC CEC-RSQ (Section 2.6).

4.6 Enhancement of Image Sequences

The still-image postprocessing ideas presented in this thesis can be extended to MPEG
image sequences. We carried out a simulation in which several 256 x 256 image
frames extracted from the standard SIF testing sequence Alexis were intracoded (I)
and then ESAP postprocessed. The compression ratio was about a 12:1 and the
postfilter steepness-bias parameters [65] were (S, B) = (5,0). In [65] both interpolated

frequency images are weighted with the log-sigmoid function

1

logsig(S,w, B) = 1~ “ismimimi

(4.1)
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Figure 4.4: POCS-ESAP algorithm’s flowchart.
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[BPP [ JPEG | SBC CECRSQ/RVQ | SBC-ESAP | Aspc | Asso_psar | Ausar |

0.25 | 31.68 34.10 34.24 2.42 2.56 0.14
0.50 | 34.90 36.89 37.00 1.99 2.10 0.11
1.00 | 37.96 40.13 40.13 2.17 2.17 0.00

Table 4.6: PSNRs for 512 x 512 Lena SBC image.

where S and B are the steepness and bias to be determined during encoding and
w is the normalized frequency [0..1]. The optimal (S5, B) parameters are iteratively
searched over the PSNR surface to obtain the maximum PSNR. The (S, B) values are
then transmitted to the decoder as a byte of side information. The PSNR gain for the
frame sequence averaged 0.4 dB PSNR. This was enough to significantly attenuate

the mosquito effect visibly present in the original I-coded sequence.

4.7 Pixel-variable Region of Support for Adap-
tive Filter h,, ,[n].

We also modified ESAP to obey a pixel-adaptive filter size Ny x Ny similar to the
Wavelet’s theory constant-Q) (% = constant) space-frequency localization property.

We defined a new two-element space-frequency separable vector inner product

Q1

2

w1 [n4]

[w] [f[n] ] = { ] [ falma] falna] | = { ] = Qeonst (4.2)

Wy [ng

where | <w; < Ny, 1 <wy <N, . and the DCT interpolated bandwidths f;[n]
and fy[ns] are in the (0.0, 1.0) frequency range. This variant of the algorithm did
not transmit any win| side information since f[n] is implicitly embedded in the DCT
coefficients.

Initially, this modification seemed to be supported by previous tests, where

the optimally searched scalar w parameter of the EDGE pixels varied between 7 to
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13 pixels most of the time, never reaching its maximum width of 17. Also, many
TEXTURE pixels with high bandwidths were left unchanged (f = 1.0), strongly
suggesting a constant-() hypothesis.

After various experiments, we realized that the pixel-variable region of support
(ROS) of Equation (4.2) was not performing better than the fixed 17 x 17-pixel
region of support. We attribute this behavior to the artificially imposed 8 x 8 MCU
segmentation. A 17 x 17 adaptive filter will always cover at least four contiguous
MCUs, smoothing out any artificial discontinuities between the four blocks. On the
other hand, smaller adaptive filters of order 3 x 5 for example, may not be able to
smooth out interblock discontinuities.

In an experiment with the 512 x 512 JO Lena image coded at a bit rate of
0,25 BPP, we found that convergence was attained for a pixel-variable ROS with
parameters' (o,t, f,Q) = (1.7,1,0.25,1.7). The resulting postfiltered PSNR was
32.86 dB, which is 0.21 dB lower than the fixed 17 x 17 ROS JO-ESAP result of
33.07 dB shown in Table 4.1. The resulting image is listed in Appendix A under
Section 4.7.

4.8 JPEG Color Image Enhancement

An obvious extension of the gray-scale ESAP algorithm is postfiltering in the RG'B or
Y CyC, color spaces. We perform a straightforward separate postfiltering optimization
of each color plane.

For this experiment, the maximum color image size is limited to 1008 x 1008
pixels. This restriction arises from the Canny edge detection software which limits the
image size to 1024x 1024 pixels for proper handling of the DC values and boundary
conditions. Since we need to reserve an eight-pixel stripe on each side of the image

to accommodate the reflected borders (one JPEG block on each side), the effective

!Please refer to Section 3.4 for parameter definitions.
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maximum width for this simulation is limited to 1008 x 1008. The entire Canny
software was not recompiled to allow larger images since we felt that 1008 x 1008 pixels
was more than adequate for demonstration purposes. Moreover, the computational
load increases with an O(N?), which imposes extremely long processing time for large
images (N > 512). Finally, the images are required to be multiples of (16 x 16)-pixel
JPEG minimum coded units. This is a restriction imposed by the CCIR-601 YUV-3

color space sampling of 2:1:1.
In order to manually create images that are 16 x 16 MCU multiples we developed

two additional auxiliary functions, 16x16 MCU_pad.c and cut_image.c with usage:

16x16_MCU_pad Hin Win Hout Wout infile outfile

cut_image Hin Win Hout Wout start_row start_col infile outfile

The source code for the above functions is available in Appendix B. We also made
extensive use of the ImageMagick Toolkit (©1994 by E. I. duPont de Nemours &
Company. This toolkit provides very useful image format conversion utilities such as
convert and display. To process an RGB color image it is necessary to perform the
steps listed in the file PROCEDURE color_esap included in the same appendix. This

procedure requires of the following steps:
1. Convert RGB image to PNM.
2. Compress PNM image using cjpeg-5b

3. Decompress image with modified djpeg 5b_esap_color program to obtain the
Y luminance DCT_COEFFS.0 dump and the U and V chrominance DCT_COEFFS. 1

and DCT_COEFFS.2 PNM coefficient dump.
4. Convert PNM image to YUV-3 image

If necessary, manually coerce any resulting gray-scale Y, U, or V images to be

(&3¢

multiples of 16 x 16 macroblocks using the utilities cut_image or 16x16 MCU_pad.
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6. Convert the original PNM image to PGM (gray-scale). This is required since the
experimental program djpeg-5b_esap_color dumps the Y coefficients in MCU
order (1-2,5-6,9-10,13-14,...) and not in the expected (1,2,3,4,...) sequential
order. Save the output DCT-COEFFS. 0 file.

7. Postfilter each color plane using esap_r29.
8. Compute each color component MSE using Equation 4.3.
9. Obtain composite MSE using Equation 4.4.

10. Obtain CPSNR using Equation 4.5.

11. For a subjective evaluation, display the original, JPEG decoded and ESAP
postfiltered YUV-3 images.

4.8.1 Composite PSNR Distortion Measure

To assess the objective quality of JPEG color images we need to define a composite
MSE (CMSE) and its corresponding composite PSNR (CPSNR). Recalling that the
2:1:1 Y, C, or equivalent YUV -3 color space subsampling spatially decimates the Cj,
and C, color planes by a factor of two, we observe that the ¥ luminance component
contributes 4/6 to the composite MSE while the C and the C, chrominance compo-
nents each contribute 1/6 of the weight. The MSE for each color component of the

original z[n] and decoded Z[n] images under consideration is given by

Ni—1 Na—1
dMSE(rcomp[nla nQ] nccomp[nh n2] Z Z $comp n1, n2 jcomp[nh n2])2'
N N ny= =0 ng= =0
(4.3)
The composite MSE distortion is thus defined by
X 2 .
demse(zye,c,[n], Zye,c,[n]) = 3 dysp(wyn], Ty[n])
1 .
+ 5 dvse(re,n], Tc,[n]) (4.4)
1 .
+ 6 dyse(ze,[n], Zc,[n])
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BPP | Original JPEG ESAP A Iterations
Image | CPSNR (dB) | CPSNR (dB) (dB) (Y, U, V)

0.21 | lena.pnm | lena.2l.pnm | lena.2l.esap.pnm | +0.397 63,35,7

30.905 31.302
0.30 | lena.pnm lena.3.pnm lena.3.esap.pnm | 4+0.672 | 91,21,133
31.765 32.437

Table 4.7: CPSNR results for 512x512 24-BPP LENA RGB image.

where the 2-D coordinate [n] = [ny, ny]. Now the CPSNR can be expressed as

CPSNR = 101 ( 25 ) (4.5)
= O N . .
810 demse(rye,c,[n], Eye,c, n])

Using the above CPSNR definition, the default JPEG Q-tables, and the 512x512
RGB Lena image we obtained the results shown in Table 4.7. The location of these

.pnm images is listed in Appendix A.

4.9 Application of ESAP to SAR Images

This section presents the results obtained by precomputing image-adaptive Q-tables
for one of the X-band images of the MSTAR 16-BPP Public Clutter SAR Set [71]
compressed at 4, 2, 1, 0.5 and 0.25 BPP and by postfiltering these images with
ESAP afterwards. This is another case of image preprocessing followed by adaptive

postprocessing. The spatial resolution of this image is 30 cm. The selected image is:

| Image | hb06194 |
Header length 01569
Number of columns | 1478
Number of rows 1784
Site huntsville_al
Desired depression | 15 deg
Size 10549089 bytes
Resolution 16 BPP

To view this image please refer to Appendix A.
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One of the images with the most varied features in the set is hb06194. It
contains several man-made structures rich in high-frequency detail. These include
about eight buildings and houses, fences, driveways, streets and roads. Noticeably,
about 25% of the image seems like highly textured plowed land. These details, which
might as well be sown ground, are displayed in a diagonal spatial orientation. The
image also contains about 30% of low frequency regions corresponding to wooded
areas. The image dynamic range is first converted from 16 to 8-BPP using the
16to8bpp () program. Within this program, we took the log,,() of the image to
further reduce its dynamic range and make the details more visible. In its original
linear scale, only a few features are discernible, that is, the image mostly looks like
dark background. Finally, we cropped the image to 1008x1008 pixels in order to
make it compatible with the ESAP Canny edge detection algorithm.

SAR-AQ-ESAP Results

Table 4.8 shows the SAR-AQ-ESAP results. Letter ¢ refers to the JPEG quality and
the value A optimizes the Langrangian cost function J(A) = D + A R. Blank entries
are not applicable (N/A). The location of the .pgm images in the second column of
Table 4.8 can be found in Appendix A.

We can draw some conclusions by comparing default ()-table JPEG compressed
SAR images with the same images coded with image-adaptive @)-tables (preprocess-
ing) and subsequently, postfiltered with ESAP (postprocessing). SAR-AQ works well
numerically by significantly improving the PSNR. However, subjectively, JPEG and
AQ images have about the same perceptual quality. Adding the extra step of post-
filtering a SAR-AQ image with ESAP does not improve the perceptual SAR image

quality either. Our findings for this scenario are:

1. For our log;; SAR image coded at bit-rates of 4, 2 and 1 BPP the corresponding
AQ PSNR increases are 5.6, 2.5 and 0.5 dB over JPEG, respectively. The ESAP

improvement is negligible in all cases. Subjectively, the visual quality differences
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Method Image BPP PSNR AAQ AESAP
(.pgm) (dB) (dB) (dB)
JPEG (¢=92) s4j 3.982679 | 38.307110
AQ (A=T725) sda 3.971940 | 43.940041 | +5.632931
ESAP sde 3.971940 | 43.940044 +0.000003
JPEG (¢=T71) s2j 2.000476 | 29.326717
AQ (A=11929) s2a 2.000606 | 31.868393 | +2.541676
ESAP s2e 2.000606 | 31.868401 +0.000008
JPEG (¢=35) | slj |0.993944 | 26.482403
AQ (A=25000) sla 0.993605 | 26.999495 | +0.517092
ESAP sle 0.993605 | 26.999506 +0.000011
JPEG (¢=16) s.9) 0.489941 | 24.839300
AQ (A=43212) s.ha | 0.487311 | 24.906841 | +0.067541
ESAP s.he 0.487311 | 25.028065 +0.121224
JPEG (¢=9) s.25) | 0.236983 | 23.588264
AQ (A=T73993) | s.25a | 0.233314 | 23.606958 | 4+0.018694
ESAP s.25e | 0.233314 | 23.715248 +0.10829
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Table 4.8: PSNR comparisons for the hb06194 SAR image using JPEG, AQ and ESAP.




among the three cases—JPEG, AQ and ESAP—are almost imperceptible.

2. For the 0.5 bit-rate, the visual quality of the JPEG image is perceptually better
(sharper) than the AQ and ESAP images although its PSNR is 0.19 dB lower
than the ESAP image. DCT coefficient quantization visibility may explain this

mismatch.

3. For 0.25 BPP, all the images have very low perceptual quality, although AQ and
ESAP showed a 0.02 and 0.12 dB PSNR improvement over JPEG, respectively.

4.9.1 Weighted MSE

We also experimented with weighting of the DCT coefficient errors using the tool
adaptQw. This program implements a weighted mean square error (WMSE) criterion
in the DCT domain by assigning different weights to the errors corresponding to each
2-D DCT frequency. The interested reader may find the modified adaptQw.c and
qadaptw.c programs that perform WMSE image-adaptive ()-table computation in
Appendix B.

The next four Qweight[n] matrices are actual examples applied to a 128x128
subimage of the larger SAR hb06194 image. All examples are coded at about 0.5
BPP. For a given bit rate, larger coefficient weighting caused proportionally larger

DCT step sizes as shown in the example pairs
Qweight[n] — Qtable[n]

below. The first Qweight[0] weighting matrix is the MMSE case. An explanation of

this behavior is offered after the examples.
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Examples of Qweight[n] Matrices

1.5
1.1
1.3
1.3
1.6
1.5
4.5
6.5

—_ = e = = e —_ = = e e e e

<33 S T S SN U N

1.0
1.1
1.2
1.5
2.0
3.2
5.8
8.4

33 B J Ty S NN

—_ = = e e e e

NN DN N N DN = =

0.9
1.3
1.5
2.0
2.5
5.0
7.1
8.6

Qweight[0]

—_ = = e e e e
—_ = = e e e

—_ = = e e e
—_ = e e e e e

Qweight[1]

RO RO BN DN DN DN DN =
DO RO BND DN DN DN DN —

DO RO BND DN DN DN DN —
RO RO BND DN DN DN DN =

Qweight[2]

N R

R R R

R I RS R S R S RS,

Qweight[3]

1.5
1.7
1.5
2.6
5.1
5.8
7.9
8.9

1.5
2.4
3.6
4.6
6.2
7.4
9.4
10.2

NN DN BN DN N N = el e e e

3.6
5.3
5.2
7.9
9.9
9.5
11.0
9.1

RO BND BND DN DN DN DN —

4.6
9.5
6.3
7.3
9.4
10.3
10.9
9.6

PSNR

29
42
46
51
46
255
255
255

37
50
96
58
102
255
255
255

PSNR

29
26
30
51
46
255
88
255

33

34
112
255
255
255
255
255

PSNR

46
62
55
71
72
255
255
39

9.5
5.0
5.1
5.6
7.0
8.4
9.2
9.0

49
71
69
7
87
255
33
46

51
95
72
110
255
255
255
255

36

92
255
255
255
255
255
255

61
7
72
110
255
32
43
255

PSNR

37
26
30
51
112
255
255
255
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33
34
96
80
255
255
255
255

Qtable[0]
24.503012

41
7
94
255
255
255
255
255

BPP

95
118
255
255
255
255
255
255

Qtable[1]
24.274549

36
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

BPP

65
255
255
255
255
255
255
255

Qtable[2]
24.546888

70
105
94
255
35
65
75
255

24.38

33
53
90
255
255
255
255
255

255
255
255
255
255
255
255
255

BPP

95
66
255
30
51
69
255
255

255
255
31
52
7
255
255
255

Qtable[3]
BPP

5801

55
105

94
255
255
255
255
255

95
255
255
255
255
255
255
255

0.482221

255
255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

0.494398
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255
255
255
255
255
255
255

255
255
255
255
255
255
255
255

0.662445

90
32
a7
255
255
255
255
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255
255
255
255
255
255
255
255

45
255
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255
255
255
255
255

0.483682

255
255
255
255
255
255
255
255

255
255
255
255
255
255
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Effects of the WMSE on the DCT Quantization Matrix

This behavior can be explained as follows. Recall that the WMSE is a summation
of the weighted square errors of the quantized DCT coefficients. Let us assume that
we change the weight of a single coefficient while keeping the remaining 63 coefficient
errors with unity weight. Since we are trying to minimize a summation, any coefficient
error that is artificially increased by a larger weight, will tend to be offset by lower
errors in the remaining 63 coefficients. The only way to achieve this is by decreasing
the step sizes of the remaining 63 coefficients. Therefore, increasing the weight of any
error associated with a particular coefficient has the effect of reducing the step sizes,
and consequently the square errors, of the remaining coefficients in order to minimize
the MSE at the desired bit rate. This effect is also true for groups of coefficients
taken at a time (case of Qweight[1]). We also found that decreasing the weight of any
coefficient error or group of coefficient errors (case of Qweight[2]) increases the step
sizes of the remaining coefficients with respect to the MMSE case represented by the
unity weights of Qweight[0]. The larger step sizes of the remaining coefficients cause
a “larger” error to offset the artificially diminished importance of the small weight
€errors.

Our results did not show any obvious visual improvement over simple MMSE
(equally-weighted error). It was difficult to reach a conclusion with the limited ex-
perimentation performed. It was not possible to identify a good Qweight matrix that
would have improved the visual quality of the small 128x128 SAR sub-image under
testing. Larger image sizes in the range of 512x512 to 1024x1024 pixels must be
considered. We must also take into consideration other classes of images including
natural images, head and shoulders scenes, and visible spectrum or infrared remote

sensing images. This topic remains largely as an open research area.
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CHAPTER 5

Pre-post Filtering Methods

In this chapter we extend the concepts of one-dimensional pre-post filtering of Sec-
tion 2.2 to two-dimensional gray-scale images. The underlying idea of audio pre-
post filtering is to raise the low level, high frequency components above the analog
recording medium’s high frequency hiss noise and then during playback, restore those
components to their original level. By attenuating these high frequencies with a gain
that is the reciprocal of the preemphasis gain, this process simultaneously brings
down the preemphasized signal along with the noise level by an amount equal to the
attenuation.

Similarly, the fundamental idea behind the dterative pre-post filter (IPF) to be
discussed in Sections 5.2 and 5.3, is to emphasize the high frequencies with respect
to the low frequencies before coding and then, deemphasize these frequencies after
decoding. It is well known that perceptually the HVS tolerates — and sometimes
does not even perceive — low bit rate blocking in the presence of high frequency
spatial sinusoids with magnitudes above certain perceptual thresholds for each DCT
frequency band [23, 24]. We should search for a preemphasis gain and highpass cutoff
frequency that will effectively raise these frequency components above the blocking
noise. Upon deemphasis, blocking should have been deemphasized by the preemphasis
gain. By doing this we are preserving the high frequency, low level detail that will
improve the visual quality as well as the PSNR.

This process imposes a tradeoff between the amplitude of the low frequency and
the high frequency coefficients of the DCT (or a SBC in the next chapter). Since
the overall dynamic range of the preemphasized image is compressed to an 8 BPP

unsigned integer range, the net effect is a proportional decrease in the magnitude



of the DC and near-DC coefficients while the relative magnitudes of the remainder
AC coefficients are increased. This causes a larger proportion of the AC coefficients
to become significant (non-zero) after quantization, improving the decoded image
quality near the image edges and textures. The process is reversible at the decoder
due to pre-post filters. The relation between the frequency responses of the two filters
is given by

Plw,G) D(w,G) = 1. (5.1)

where (G is the preemphasis gain expressed in dB. The extension of this 1-D equation
to images will be fully described in Section 5.3 through Equations 5.4-5.6.

This thesis is mainly concerned with improving the JPEG algorithm’s perfor-
mance in a coder-compliant manner. In other words, we look for ways to minimize
the DCT’s rate-distortion product. In JPEG image coding, as with almost any other
image coder, the distortion is usually measured by the MSE or the PSNR since both
are easily tractable mathematical expressions. At low bit rates the blocking noise
is caused by the coarse quantization of all the DCT coefficients. The blocking dis-
continuities are more noticeable in the low frequency regions with spatial frequencies
around 8 cycles/degree (Section 2.4.2). Since ESAP does a reasonable job in postfilter-
ing the coarsely quantized DC and low-frequency AC coefficients in the background,
we have that portion of the problem solved. We now need to raise the level of the
high frequency AC coefficients above their respective quantization thresholds in order
to reduce the DCT blocking noise level and retain more of the high frequency content
of the image.

We can interpret the blocking noise level as windowing (Section 3.1) or in the
spatial domain as the absence of the high frequency components of the original signal.
When we raise the level of those high frequency AC components sufficiently, so that
the DCT quantization steps are relatively small enough in relation to the preempha-
sized signal, these coefficients become significant (non-zero) and help to diminish the

artificial blocking discontinuities caused by independent MCU encoding.
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We can increase the high frequency content of an encoded image in two ways.
The first obvious one is to diminish the quantization step sizes of the high-frequency
DCT coefficients. This introduces a tradeoff. With the first option, the bit rate will
go up, therefore we need to increase the DC and low-frequency AC quantization step
sizes to keep a constant bit rate. Now this causes further MSE distortion, therefore
this obvious approach does not work.

The second approach involves pre-post filtering, dynamic range companding,
adaptive quantization and ESAP postfiltering based on the dbx audio noise reduc-
tion system. This is the subject of Sections 5.1 and 5.2 below. With these approaches
we are able to artificially raise the value of the AC coefficients before encoding forcing
them to be significant. Since we are using pre-post filters, the image can be reversibly
deemphasized at the decoder. The dynamic range companding brings the preempha-
sized dynamic range back to an 8 BPP range, and along with it, lower amplitude DC
and low frequency AC coefficients. This is a reasonable tradeoff for artificially larger
high frequency AC coefficients which preserve some of the detail which would be
otherwise lost. The adaptive quantization of the DCT coefficients through Lagrange
multiplier cost minimization [31, 32], adjusts the quantization table to accommodate
larger AC coefficients at the expense of smaller DC and low frequency AC coefficients.
Finally, the insertion of ESAP in one of three possible positions smoothes out the in-
terblock discontinuities by interpolating the DCT bandwidths among at least four
physically-contiguous 8x8 blocks.

This combination of techniques improves the JPEG objective and subjective
quality to comparable state-of-the-art subband coders. This increase in quality, which
preserves full JPEG compatibility, comes at a price though. The penalty paid is ad-
ditional computation for the pre-post filtering, the image-adaptive ()-table computa-
tion, for dynamic range companding and for the ESAP adaptive convolution. Since
IPF is an asymmetrical process, it iteratively searches for the optimal MSE parame-

ters at the encoder. The search process, which follows a steepest descent path on the
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MSE surface, will iterate until MMSE convergence. However, at the decoder, all this
processing is done only once.

We feel that the proposed algorithms could be implemented in faster dedicated
firmware to obtain real-time optimal performance. Suboptimal fast encoder perfor-
mance can also be achieved with fixed pre-post filters and fast ¢)-table lookup based
on classes of images and image statistics. Image companding (Equations 5.7 to 5.9)
is a very fast O(N?) process that should not affect IPF’s real-time performance sig-

nificantly.

5.1 Initial dbz-like Pre-post Filtering System

Figure 5.1 shows an early version of the iterative dba-like pre-post filtering algorithm.
It was implemented in MATLAB using a combination of “m” functions and system
calls. For example, using a cutoff frequency w, = %7‘(‘, we were able to obtain a 1.1 dB
PSNR improvement over JPEG at 0.3 BPP. The optimal compression-gain (C,G)*
was (-0.0625, 0.7500) dB. These “dbx” parameters actually ezpanded the dynamic
range from [0...255] to [0...276] and preemphasized the image by +0.75 dB (x1.19
factor) before JPEG encoding. Please note that an expanded upper limit of the
dynamic range does not necessarily imply that x,,,. > 255. At the decoder, the

image’s dynamic range was compressed back to its nominal [0...255] original range

and subsequently deemphasized by —0.75 dB.

5.2 Iterative Pre-post Filtering of JPEG Images

The dba-like test system of Section 5.1 was not completely adaptive in the sense that
its quantization table remained fixed for all iterations. Only its pre- and postfilter
gain, and its dynamic range companding were image-adaptive. In order to better
conform to specific image statistics which change with each iteration’s preemphasis

values, the filter’s highpass cutoff frequency w. and quantization table ¢) must be
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NOTE: 2-D filters are separable 1-D P(w) and D(w).
Figure 5.1: Iterative image-adaptive dbz-like JPEG blocking noise reduction.

67




jointly optimized in conjunction with the pre-post filtering and companding. Also
blocking reduction ESAP postfiltering can be inserted after JPEG decoding. The
system would be asymmetric and require a minimal overhead on the order of 0.0001-
0.0002 BPP. The system can also have a fast implementation by using FFTs for
preemphasis and deemphasis and Fast DCTs for the JPEG codecs (already part of
the 1JG software.)

Using the basic )-table adaptation algorithm provided by Crouse and Ramchan-
dran [31] which was extended as described below, we developed the JPEG-compatible
iterative pre-post filter with ESAP enhancement shown in Figure 5.2. The IPF algo-
rithm is based on the dbz audio noise reduction system. The usage of the adaptQw()

program is as follows:

> adaptQw
USAGE: adaptQw blilr bpp:in | lambda:in [lambda2:in lambda_inc] image:in
height:in width:in Qlower:in Qupper:in (Qweight:in Q:out

Options: b = target bit-rate, [bpp] range (0.1..7.99)
i = interactive, requires only lambda:in

r = range, also requires lambda2:in lambda_inc

Examples:
adaptQw
adaptQw
adaptQw

o

0.50 lena.b512 512 512 Q.1 Q.255 Qw Q_0.5bpp
15000 lena.512 512 512 Q.26 Q.225 Qw Q_15000
15000 30000 1000 lena.512 512 512 Q.1 Q.255 Qw Q_15-30k

H o

This program minimizes the Lagrangian cost function
J(lambda) = D + lambda*R
Higher lambda means lower rate.
Given a desired bit rate, the adaptQw() algorithm performs a binary bpp search
between two initial points (Amin, bmaz) and (Aaz, bmin) obtained from the empirical

exponential curve fit

\ = 10 (8-b)/1.63 (52)

or equivalently

b=8—1.63log,(}\) (5.3)
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Figure 5.2: IPF JPEG blocking noise reduction.
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where b represents the desired bpp rate. The program initializes A, to A/s; and
Amaz 10 A X s5, where s; is an appropriate scale factor in the range {2, 4, 8, ... }.
Other output options include interactive and range optimal Q-tables for any given A.

The initial version of the algorithm was completely implemented in MATLAB
with the exception of system calls to cjpeg, djpeg, adaptQw, etc. It was later trans-
lated to C to prevent “MATLAB out of memory” allocation errors. The algorithm’s
source files in the C and MATLAB languages are listed in Appendix B.

5.3 IPF Description

IPF is best described by referencing Figures 5.2, 5.3, and 5.4. The image examples
of Figures 5.3 and 5.4 correspond to the 0.25 BPP row of Table 5.1. It should be
mentioned that the displayed dynamic range of Figures 5.3(b)—(c) and 5.4(d)—(e) is
stmulated. We used 12 bits to represent a signed integer range of —2048... 4 2047
that quantizes the IPF’s internal 32-bit floating-point precision. We kept the 8-BPP
unsigned integer dynamic range of (a), (f), and (g) unchanged and rescaled the 12-
BPP signed integer range of (b), (c), (d), and (e) into an 8-BPP unsigned range for
proper image display when using a linear scale.

At the encoder, the original image x of Figure 5.3(a) is preemphasized with the
filter P(w, ), where w is the HPF cutoff frequency corresponding to the separable
DCT bandwidth f of Figure 3.1 (w ~ f) and G is the preemphasis gain in dB. The
dynamic range of the resulting preemphasized signal z. shown in Figure 5.3(b) is
compressed into an 8-BPP range of 0-255 using the dynamic range compression (DRC)
function. Then the range-compressed signal z, of Figure 5.3(c) is used to compute
a MMSE optimally quantized ()-table using the Lagrange multiplier minimization
function adaptQw(). The image is then JPEG compressed using the standard 1JG
cjpeg() function.

The 2-D pre-post filters P(w, ) and P(w, &) are made of separable 1-D filters,
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(a) Original image x. (b) Preemphasized image z..

(c) DRC image z,.

Figure 5.3: Segments of the 512x512, 8-BPP Lena image at the IPF encoder.
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(f) Deemphasized image &. (g) JPEG-IPF-ESAP image &.

Figure 5.4: Segments of the 512x512, 0.25-BPP Lena image at the IPF decoder.
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where the dB gain G applies to both dimensions, P(w, ) is the preemphasis filter
and D(w, ) is the deemphasis filter. P(w, &) is designed to obey the preemphasis

characteristic

pln] = 8[n] + g hln] <= P(w) = 1 + g H(w). (5.4)

From 5.4 above, the dB gain is given by

GdB = 1010g10(1 + g) (55)

since p[n] is a non-causal even-symmetric real sequence. The 2-D separable pre-post

filter inverse pair is given by

P(wl,wg,G)D(wl,wg,G) =
Pl(wl, G) PQ(CUQ, G) Gl(wl, G) GQ(CUQ, G) = 1. (56)

Finally, companding obeys the following equations. For dynamic range compression
Ly = C (:Ce - :Eemin)7 (57)

and for dynamic range expansion

b= i + (5.8)
Le = C:ET Jjﬁmin? .

where

c=— 20 (5.9)

:Cefma.r - :Eemin

At the decoder, the JPEG file X;(k) is decompressed into the Z, image shown
in Figure 5.4(d), and then it is dynamic range expanded (DRE) into the &. image of
Figure 5.4(e). The image is next deemphasized with the filter D(w, ) to create the
& image shown in Figure 5.4(f). Finally it is ESAP postfiltered into the & image to
obtain further block smoothing as shown in Figure 5.4(g). The ESAP filter can be
inserted in any of three possible positions: posi,posy or poss. Depending on which
position is selected, we could create the intermediate process images %,, . or Z.

Along with the JPEG coded image X;(k), we need to pass four overhead bytes to

73



the decoder: the dynamic range compression parameters (x., . , &, ..) and the pre-
post filter parameters (w, ). This overhead only amounts to about 0.0001 BPP for
a 512x512 8-BPP gray-scale image at a 32:1 compression ratio (0.25 BPP). Please
note that the encoder contains a decoder within itself.

To start the program, an initial guess of (wg, Gip) needs to be given. The program

is invoked from the command line using:

> compl_model_enc
USAGE: compl_model_enc X H W R wc G esap_pos N Gr gn_file
ex: compl_model_enc lena.512 512 512 0.25 0.5 2.0 1 7 6 gn_N7_G6

A description of the input parameters follows:

H and W are the height and width of the input image x. R is the desired BPP
rate, (wc,G) are initial condition preemphasis and deemphasis pre-post filter search
parameters, esap_pos can only be {1,2,3}, N is the 2-D pre-post filters’ order NxN,
Gr is the pre-post filters’ dB gain range (—G,..0..G,), and finally, gn file are the
precomputed 2-D symmetric pre-post filters. They are precomputed with the ex-
ternal MATLAB function compl filt2file.m. Only the IV quadrant of the filter
coefficients is stored in the output file due to its four-quadrant symmetry.

It was found during testing of IPF that it can sometimes converge to local MSE
minima, that is, the IPF MSE is not a true quadratic multidimensional function. This
contrasts with the ESAP-only postfilter case shown in Figure 3.6, which involves truly
monotonic 2-D functions. The IPF local minima behavior is shown in Figure 6.2 for
SBC images, but it is similar for JPEG images. Equation 2.4 no longer holds for
IPF. We attribute this non-monotonic behavior to the non-stationarity created by
the changes in quantization tables for each iteration ¢ with different values of (w;, G;).

In order to speed up the search process, the user needs to use some insight into
any previously obtained results to decide which new initial conditions could provide a
smaller initial local MSE. In the case where there is no previous data, the algorithm

can be initiated with (w.,G) = (0.01, 0.0). This initial search point corresponds to
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a pure JPEG operation, with neither preemphasis, nor dynamic range compression.
It is also suggested to place ESAP in position 3. This generally provides the best
postfiltering results since this allows the DRE and D(w, ) functions to fully utilize
the internal floating point precision available after decoding the X;(k) JPEG file.

5.4 Results

This section compares IPF with baseline JPEG, EZW and SPIHT algorithms. Ta-
bles 5.1 and 5.2 show the IPF results for the 512x512 8-BPP “Lena” image and
Tables 5.3 and 5.4 show the results for the 512x512 “Barbara” image. All the images
are .pgm formatted and are listed in Appendix A. The IPF images were obtained
with the algorithm described in Figure 5.2. For comparison, the PSNR values ob-
tained with baseline JPEG, Shapiro’s Embedded ZeroTree Wavelet coder [41], and
experimental results obtained with Said and Pearlman’s Set Partitioning in Hierarchi-
cal Trees (SPIHT) subband coder [70] are shown in the third and the two rightmost
columns, respectively. The EZW PSNR values are taken from the literature and their
corresponding images are not available. The values (w,,, G,) are the quantized cutoff
frequencies and gains for the pre-post filters, respectively. The expanded dynamic
range is bounded by (z.,,. , ... ) which can normally be represented by two 12-bit
signed integers. N is the 2-D pre-post filters’ order N x N, and finally, G, is the

pre-post filters’ dB gain range (—G.,..0..G,).

5.5 Findings

This chapter is concluded with some observations based on the results shown in

Tables 5.1 through 5.4 and observations made in Section 5.3.

1. The MSE(w, GG) of IPF is not a quadratic function of (w, ). Therefore, trial-

and-error or an exhaustive search must be used to obtain the absolute lowest
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BPP | IPF Parameters Image/PSNR
(quv GQ)
CATE JPEC IPF | EZW | SPIHT
N, G,
0.25 (0.0469, 8.9609) | lena.25.jpg | lena.25.ipf | N/A | lena.25.sp
(-94, 1106) 31.68 33.15 | 33.17 | 34.14
13, 9.25
0.50 (0.0312, 7.8047) lena.5.jpg | lena.5.ipf | N/A | lena.5.sp
(-14, 976) 34.90 36.34 36.28 37.25
13, 9.25
1.00 (0.0469, 8.4375) | lenal.0.jpg | lenal.0.ipf | N/A | lenal.0.sp
(-20, 1019) 37.96 39.28 39.55 40.46
11, 10

Table 5.1: JPEG, IPF, EZW and SPIHT comparison for 512x512 Lena image.

| BPP | Arpr [ Apzw | Asprar |

0.25
0.50
1.00

1.47 1.49
1.44 1.38
1.32 1.59

2.46
2.35
2.50

Table 5.2: IPF PSNR dB improvement for 512 X 512 Lena image.
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BPP | IPF Parameters Image/PSNR
(wcq7 GQ)
(Teprins Teman ) JPEG IPF EZW SPIHT
N, G,
0.25 (0.0469, 7.5938) | barb.25.jpg | barb.25.ipf | N/A | barb.25.sp
(-195, 1021) 25.02 27.23 26.77 27.40
9, 9
0.50 (0.0312, 4.3125) barb.5.jpg | barb.5.ipf | N/A | barb.5.sp
(-33, 562) 28.27 31.09 30.53 31.25
7,6
1.00 (0.0469, 3.5938 | barbl.0.jpg | barbl.0.ipf | N/A | barbl.0.sp
(-50, 451) 33.10 35.87 35.14 36.22
9, 5

Table 5.3: JPEG, IPF, EZW and SPIHT comparison for 512x512 Barbara image.

| BPP | Arpr [ Apzw | Asprar |

0.25
0.50
1.00

2.21 1.75
2.82 2.26
2.77 2.04

2.38
2.98
3.12

Table 5.4: IPF PSNR dB improvement for 512 x 512 Barbara image.
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MMSE (maximum PSNR). However the local minima that may be encountered
are usually very close to the absolute MMSE. Thus, a suboptimal convergence
should be acceptable given its proximity to the MMSE. This nonmonotonic
behavior is illustrated in Figure 6.2 which is also applicable to JPEG-IPF.

2. ESAP position 3 offers the best PSNR postfiltering results since the DRE and

D(w, @) functions fully utilize the internal floating-point precision available im-

mediately after JPEG decoding.

3. IPF results are comparable in PSNR and subjective quality to the EZW /SPIHT

subband coders. The IPF PSNR is slightly lower than SPIHT, depending on

the image and bit-rate.

. The binary search for an optimal ()-table given a desired bit rate using the
adaptQw() function is the most time consuming task within the IPF algorithm.
The second most computationally intense task is ESAP. For example, a typical
encoding/decoding iteration with N = 7 takes about 16 minutes on an unloaded
SUN SPARC 2. Close to 50% of this time is dedicated to obtain the image-
adaptive ()-table, 25% for ESAP and the remaining processing time is used by

the companding and pre-post filtering operations.
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CHAPTER 6

Application of IPF and ESAP to SBC —
Implicit SBC Coefficient Generation

Iterative pre-post filtering (IPF) of SBC images attempts to improve the subjective
and objective quality of Said & Pearlman‘s Set Partitioning In Hierarchical Trees
(SPIHT) octave-band subband coder [69]. This pre-post filtering algorithm for SBC is
a basically a modification to the iterative pre-post filtering of JPEG images presented
in Chapter 5.

6.1 IPF and ESAP applied to SPIHT SBC im-
ages

In the previous chapter, we stated that the fundamental idea behind IPF is a tradeoff
between the amplitude of the low frequency and the high frequency DCT coefficients
to raise the low level, high frequency components of the signal above the blocking
noise. However, since SBC does not introduce blocking, this algorithm does not
improve the decoded image significantly for low bit rates near the 0.25 BPP range,
as we will see shortly.

The SBC-IPF algorithm concepts are very similar to JPEG-IPF. High frequen-
cies are preemphasized with respect to the low frequencies. Also, the overall dynamic
range of the preemphasized image is compressed to an 8 BPP unsigned integer range
with the intention to decrease the magnitude of the lower subbands while the magni-
tudes of the remainder higher frequency subbands are increased before encoding. The

process is reversed at the decoder due to pre-post filters with the inverse identity re-



lationship of Equation 5.1. In the JPEG case of Chapter 5, ESAP further adaptively
smoothes out the blocking artifacts.

The SBC-IPF algorithm concepts are easily explained by referring to Figure 6.1.
An 8-BPP gray-scale image x is preemphasized with a filter P(w, ) to obtain a
floating point image ., its dynamic range compressed (DRC) to an 8-bit unsigned
integer range image x, and then input to the SPIHT codetree subband coder.

The compressed stream X (k) is decoded into the floating point image #, using
the decdtree program. Its dynamic range is expanded (DRE) into its original floating
point range of (x., ., e,..) creating the floating point image Z.. It is then deempha-
sized with the filter D(w, @) to obtain &. Given an initial search point (wp, Go) on
the MSE surface p(w, ), the algorithm searches for the minimum mean square error
MMSE(z, z,w, G).

The IPF-ESAP algorithm works well for the DCT but not so well for SBC. There
are some issues related to adaptive postfiltering of SBC images. First, Figure 6.1
does not show an ESAP block after D(w, ). The reason is that ESAP smoothed the
reconstructed image & more than expected, therefore it was not retained as part of
the algorithm.

In an experiment using a six-level octave band decomposition, the PSNR of the
test image “lena” at 0.25 BPP decreased from 34.13 dB (SPIHT SBC-only value) to
33.63 dB (SPIHT-ESAP value) which is acceptable but not better than the original
SBC image. To obtain the subband coefficients for ESAP postfiltering, we used the

following four programs:
e analysis
e codetree float
o decdtree float

e synthesis.
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Figure 6.1: IPF of SPIHT SBC images.
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To obtain the ESAP image we used a new revision of ESAP for SBC coefficients.
The SBC-ESAP program files are also located in Appendix B. An example follows:

analysis lenna.512 lenna.6sub lenna.LLLLLL lenna.6sub.info 512 512 1 6
codetree_float lenna.6sub lenna.6sub.sph 512 512 1 0.25

decdtree_float -s lenna.6sub.sph lenna.6sub.rec 0.25
synthesis lenna.6sub.rec lenna.6sub.info lenna.rec.25.6sub

esap_r33 lenna.512 lenna.rec.25.6sub 512 512 lenna.6sub.rec
lenna.rec.25.6sub.esap

psnr 512 512 lenna.512 lenna.rec.25.6sub.esap => 33.631176 dB

The second issue is the non-monotonicity of the SBC MSE surface pu(w, ), which
as explained earlier, is also true for DCT images. The non-monotonicity is shown in
Figure 6.2. Multiple local minima may prevent SBC IPF from converging to a true
minimum MSE. The surface looks approximately smooth but it does have various
local minima (see detail). During testing, the search sometimes stopped at one of
these local dips.

In addition, we tried several other SBC-IPF-ESAP alternatives intended to im-
prove the PSNR beyond the values obtained with the SPIHT SBC algorithm used
alone. None of these were successful. Only the simple IPF SBC model without the
ESAP block (Figure 6.1) was able to obtain a small improvement. The modifications

included:

e Using 16 BPP preemphasized gray-scale input images to the SBC instead of 8
BPP images with no DRC/DRE

e Using passband pre-post filters P(w, ) and D(w, () instead of the high pass

filters currently used.

e Using non-inverse filters P(w;, G) and D(wz, ), where the cutoff frequency w
is not equal to wy (w1 # wy). This is another form of passband preemphasis or

deemphasis.
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Figure 6.2: SBC MSE p(w,G) surface for Lena @ 0.25 BPP.
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o First deemphasizing, coding/decoding and then postemphasizing vs. current

preemphasis — coding/decoding — deemphasis.

e Using a variety of pre-post filter sizes ranging from M x M =3 x3,...,17x 1T.
The best filters were in the 5 x 5 to 9 x 9 range.

One interesting space-frequency interpretation which did not provide any addi-
tional image enhancement is shown in Figure 6.3. From this figure, which contains
the spatial frequency mapping for a 6-level octave band decomposition, we obtained
the SBC coefficients to implicitly create the horizontal and vertical frequency images
shown in Figures 6.4(a) and (b), respectively. These frequency images controlled a
pixel-adaptive SBC version of the ESAP postfilter. Since this version did not im-
prove the decoded image but did degrade it, this ESAP module was removed from
Figure 6.1.

Figure 6.3 illustrates the subband structure. Each subband is pixel-replicated
in the vertical and horizontal dimensions by an appropriate factor of {64, 32, ..., 2}
to match the original image size of 512x512 pixels. The SBC-ESAP algorithm then
looks at the highest magnitude coefficient for each pixel and assigns a SBC vertical or
horizontal frequency bandwidth in the range {61—4, 31—2, ey %}ﬂ' to that pixel. From this
information, the algorithm creates the frequency images shown in Figures 6.4(a) and
(b). Next, the SBC-ESAP algorithm follows a procedure similar to the one explained
for JPEG-ESAP in Section 3.1. The SBC coefficient-bandwidth relationships are
shown in Table 6.1. The values in the table include vertical, horizontal and diagonal
bands and need to be interpreted accordingly. For example, a pixel with a SBC
bandwidth of (¢s,c10) would be filtered with a separable pixel adaptive HPF with
vertical frequency cutoff of 11—671' and a horizontal cutoff of iﬂ'. A pixel with a bandwidth
of (cg,co) will be filtered with a HPF with cutoffs of (37, 17).

Although it is unknown at this time of any other application that could benefit

from the interpretation of Figure 6.4, it is shown for completeness. It shows the

location of the high-frequency pixels in the image as derived directly from the SBC
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Figure 6.3: Spatial frequency mapping of a 6-level octave band SBC decomposition.
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(a) Vertical frequency.

(b) Horizontal frequency.

Figure 6.4: Vertical and horizontal frequency images for a 6-level octave band SBC de-
composition.
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‘ Highest SBC Coeff. Band Present | Normalized 1-D Bandwidth ‘

Co 0.0156257
C1,C2,C3 0.03125%
C4,C5,Cq 0.06257
c7, Cg, Cg 0.1257

€10, €11, €12 0.257
C13, C14, C15 0.57
C16, C17, C18 1.07

Table 6.1: SBC coefficient-bandwidth relationships for a 6-level octave band decomposi-
tion.

coefficients. These images correlate well with the spatial edges and the highly textured
areas, as expected. For further reference, the ESAP-SBC .pgm images and .ps diagram
locations are listed in Appendix A. They are the following:

‘ Image ‘ Description
6-oct-dec.ps Spatial frequency mapping of
6-level octave band decomposition
vert{req.pgm SBC vertical frequency image
horzfreq.pgm SBC horizontal frequency image
lenna.25.6s.pgm 6-level oct. band SPIHT-34.13 dB
lenna.25.6s.esap.pgm | 6-level oct. band SPIHT-ESAP-33.63 dB

6.2 Results

The actual results after applying the IPF-SBC algorithm in Figure 6.1 to the 512x512
8-BPP “Lena” and “Barbara” images are listed in Tables 6.2 and 6.3. The location

of these .pgm images is also listed in Appendix A.

6.3 Findings

The application of IPF to SPIHT subband coded images did not improve their low
bit rate quality. Indeed, it added too much external computational burden to the

SPIHT algorithm. In its current form IPF-SBC has no practical use except for the
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Rate | SPIHT Image | IPF-SPIHT Image | A;pp
(we, G), N
PSNR (dB) PSNR (dB) (dB)
0.25 lena.25.sp lena.25.sp.ipt
(0.0176, 9.6875), 7
34.144 34.173 0.029
0.50 lena.5.sp lena.5.sp.ipf
(0.0234, 10.0000), 7
37.251 37.262 0.011
1.00 lenal.0.sp lenal.0.sp.ipf
(0.0225, 10.3125), 5
40.459 40.415 —0.044

Table 6.2: IPF-SPIHT results for the Lena image.

Rate | SPIHT Image | IPF-SPIHT Image | A;pp
(we, G)y, N
PSNR (dB) PSNR (dB) (dB)
0.25 barb.25.sp barb.25.sp.ipf
(0.0156, 7.1250), 7
27.408 27.476 0.068
0.50 barb.5.sp barb.5.sp.ipt
(0.0469, 7.5000), 7
31.251 31.255 0.004
1.00 barb1.0.sp barbl1.0.sp.ipf
(0.0156, 7.8750), 7
36.218 36.233 0.015

Table 6.3: IPF-SPIHT results for the Barbara image.
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theoretical relationships derived from the space-frequency information contained in

the SBC coefficients shown in Figures 6.4(a) and 6.4(b). Specifically we found that:

1. ESAP block smoothing works well for JPEG images, for which it was designed.
It does not work that well for SBC images where there are no abrupt high-
frequency, out-of-band blocking artifacts to filter out.

2. Pre-post filtering (IPF) works very well for JPEG images. It raises JPEG’s
performance close to most recent SBC algorithms with respect to visual and

objective quality.

3. IPF improvement for SBC images is very small and it is not worth the extra

computation.

4. There is a need to consider other classes of images besides natural images.
SAR images would be good candidates for SPIHT processing due to their wide
spectrum and the excellent performance of the SPIHT coder. Most likely, IPF
will not improve SPIHT-coded images significantly. We base this assumption

on the results shown in Table 4.8.
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CHAPTER 7

Conclusion

The ESAP algorithm introduced in Chapter 3 combines tractable MSE metrics, a
priori HVS spatial frequency response knowledge and frequency domain analysis to
obtain significant objective and subjective enhancement of JPEG images that are
coded at low bit rates. DCT blocking, which manifests itself as side lobes in the
frequency domain, can be adaptively postfiltered to simultaneously improve the ob-
jective and the perceptual quality of the decoded images. ESAP reduces the DCT
blocking without significantly blurring the true image edges with no increase in the
nominal bit rate.

Each block’s frequency bandwidth w;[m] is estimated from the decoded DCT
coefficients. These bandwidths are then interpolated to control a 2-D adaptive non-
linear postfilter hm z[n] that changes to a directional filter, a nondirectional filter, or
an impulse 6[n|, depending on the respective edge, non-edge or texture classification
of the current pixel as determined from a Canny edge detection stage. Edges are
filtered alongside and little or no filtering is performed across the edge in agreement
with the HVS frequency masking properties, subject to FIR filter design constraints.
The postfilter is completely characterized by the dequantized DCT coefficients and
requires no side information, except for an optional image-dependent ESAP overhead
if MMSE optimality is desired. This overhead is on the order of < 0.0001 BPP for a
512x512 image coded at 0.25 BPP.

Most of the ESAP’s PSNR gain is obtained from non-edge postfiltering. Edges
and textures generally represent a small percentage of the pixels in an image coded
at a low bit rate. Therefore, a simple nondirectional non-edge pixel postfilter that

requires no overhead at all is amenable for fast software implementations, yet still



provides a 1-1.5 dB PSNR gain. This algorithm is listed in Appendix B. On the other
hand, more complex configurations that provide MMSE optimality at the expense of
a small overhead are shown in Figures 3.1 and 5.2.

Any significant improvement (> 3 dB PSNR) requires a combination of adap-
tive quantization or joint optimization along with pre-post filtering. Postfiltering or
preprocessing used individually will only achieve 1-2 dB gain.

ESAP performance compared well with other image coding methods. We were
able to improve upon JPEG, AQ, JO, VQ, LOT, and POCS-coded images. Finally,
it was found that at moderate (1.0 BPP) or higher bit rates, the ESAP’s PSNR and
quality improvement became increasingly indistinguishable to the viewer, thus its
added pre- and post-processing cost was not justifiable. The typical PSNR improve-
ment is image and bit rate dependent and ranged between 0.5-3.2 dB over baseline
JPEG. ESAP can potentially be incorporated into JPEG or MPEG to minimize their
low bit rate blocking distortion. This in turn, could help to promote wider usage of
these already popular standards.

Regarding SAR images, we were able to improve the numerical objective PSNR
performance of 4 and 2 BPP images by using ESAP but the subjective quality seemed
unaffected to the human eye. For rates of 1 BPP or less, ESAP slightly improved the
PSNR but not the visual image quality. The apparent reason for this finding is that
SAR images are inherently high frequency, therefore, any high compression will zero-
out the high frequency coefficients, thus making impossible any image enhancement.

The IPF algorithm presented in Chapter 5 further enhances JPEG and ESAP
with image-adaptive coefficient quantization and pre-post filtering. IPF was able
to improve JPEG’s performance by up to 2.8 dB. As with ESAP, we retained full
compatibility with the JPEG standard and all the pre- and postprocessing was ex-
ternal to the image coding process. The main limitation of the IPF algorithm is the
necessary additional computation needed to adapt the ()-table and to perform the

pixel-adaptive ESAP postfiltering.
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IPF is based on the dbz audio noise reduction system. The algorithm preempha-
sizes high-frequency areas and then compresses the dynamic range of the resulting
image. This has the net effect of raising the low level high-frequency signals above
the blocking noise, which is analogous to the audio hiss noise. This forces larger
amplitude high-frequency DCT coefficients at the expense of lower amplitude DC
and low-frequency AC coefficients. To maintain a constant bit rate, we use image-
adaptive DCT coeflicient quantization based on Lagrange multiplier unconstrained
MSE minimization and binary search of the MMSE value X that satisfies a desired
bit rate b. The decoder expands the dynamic range to its original range and then
an inverse filter deemphasizes the image. Finally, we apply ESAP to minimize any
resulting blocking.

In Chapter 6, a similar ESAP bandwidth estimation algorithm based on the
implicit coefficients of the SPIHT subband coder was not able to improve in any
significant manner the decoded SBC image after pre-post filtering, companding and
postfiltering. It was believed prior to experimentation with the SPIHT SBC, that
SBC-IPF could possibly improve the subjective image quality as well as the PSNR
based on the improvement over JPEG images and the synthesized SBC images of Sec-
tion 4.5. Since the decoded SPIHT subband image does not have blocking artifacts,
it is now obvious that the ESAP algorithm is not well-suited for SBC images.

Regarding VQ, although it has not gained too much acceptance due to its oner-
ous codebook generation computational complexity, it is quite possible that ESAP
in conjunction with IPF could improve upon the performance of V(Q based on the
results discussed in Section 4.3.

Most of the algorithms discussed in this thesis are asymmetric, and external to
the encoding algorithm. Therefore the decoder’s performance is as fast as the original
decoding algorithm, plus the postprocessing. Since we embedded modularity in the
algorithms, the additional computational load will depend on the number of modules

selected. The selectable modules include adaptive quantization, linear pre-post filters
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(two modules), dynamic range companding (two modules), and nonlinear ESAP.

There are no iterative searches at the decoder, just straightforward decoding
plus one or more of the following steps: dynamic range expansion, deemphasis and
adaptive postfiltering. We previously mentioned in Section 5.2 that DRE and deem-
phasis are fast operations. If we limit adaptive postfiltering to the non-directional
case only, ESAP achieves a reasonably good response on the order of a minute for a
512x512 gray-scale image. Therefore, in terms of the criteria presented in Table 7.1,
the real-time performance of the decoders for each algorithm discussed falls in the
“good” (3) or “fast” (4) range. The objective and subjective performance is the same
for both encoder and decoder, since the encoders contain a decoder within themselves
to predict the decoder’s performance and to search for the optimal set of pre- and
postprocessing parameters. The objective quality is measured by the PSNR. The
basis for comparison is the JPEG’s PSNR which is assigned an “average” value of 2.
The subjective quality is based on the scored opinions of the author and several view-
ers. Images with a subjective quality comparable to JPEG are assigned an “average”
value of 2.

Table 7.2 compares all the algorithms discussed in this thesis from the encoder’s
performance point of view based on the ratings of Table 7.1. We use baseline JPEG,
EZW and SPIHT SBC encoders as our references. These C language algorithms were
executed on Sun SPARC 2 and SPARC 10 workstations. The SPARC 10 is roughly
twice as fast as the SPARC 2. All the images considered are 512x512, 8-BPP gray-
scale, except the SAR images which are 10081008, 8-BPP images.

It should be noted that although we were able to substantially improve the
objective and subjective quality of the JPEG coder through AQ, JO, ESAP, and IPF
algorithms, we were not able to outperform some current SBC algorithms like SPIHT.
Nevertheless, we were able to match, and in some instances surpass EZW, an earlier

SBC algorithm which was initially published in 1993.
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Objective PSNR quality

L. low (< JPEG)

2. average (~ JPEG)

3. good (> JPEG)

4. high (> EZW/SPIHT SBC)

Subjective visual quality ‘

L. low (< JPEG)

2. average (~ JPEG)

3. good (> JPEG)

4. high (> EZW/SPIHT SBC)

‘ Real-time performance ‘

unknown

very slow (hours)
slow (< one hour)
good (=~ few minutes)

b

fast (seconds)

Table 7.1: Performance ratings for the encoder’s algorithms.
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Algorithm Ref. | Objective | Subjective | Real-time
Sect. | Quality Quality Perf.
JPEG 4.1 2 2 4
JPEG-CBS 4.1 1 2 4
JPEG-ESAP 4.1 3 3 3
(non-iterarative)
JPEG-ESAP 4.1 3 3 2
(iterarative)
JPEG-AQ 4.1 3 3 2
JPEG-JO 4.1 3 3 2
JPEG-AQ-ESAP 4.1 4 4 1
JPEG-JO-ESAP 4.1 4 4 1
EZW 4.1 4 4 0
LOT 4.2 2 2 3
LOT-ESAP 4.2 3 3 3
VQ 4.3 1 1 0
VQ-ESAP 4.3 1 1 2
POCS 4.4 2 2 3
POCS-ESAP 4.4 1 3 2
Image sequence 4.6 2 2 4
Image seq.-ESAP 4.6 3 3 3
Adaptive ROS 4.7 2 2 2
JPEG Y, C, 4.8 2 2 4
JPEG YC,C,-ESAP | 4.8 3 3 2
SAR-JPEG 4.9 2 2 4
SAR-AQ 4.9 4 2 2
SAR-AQ-ESAP 4.9 4 2 1
Weighted MSE 4.9.1 1 1 2
JPEG-IPF-ESAP 5.4 4 4 1
SPIHT 6.2 4 4 4
SPIHT-IPF 6.2 4 4 1

Table 7.2: Performance comparisons for the encoder’s algorithms.
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7.1 Contributions

This thesis demonstrates that there are a number of external image processing tech-
niques that can be applied to the DCT-based JPEG Standard to improve its objec-
tive and subjective performance close to the level of current state-of-the-art subband
coders. All of this can be done while maintaining full JPEG syntax compliance. The
most promising techniques to achieve these results are a combination of pre- and post-
processing techniques including AQ or JO in conjunction with ESAP, or the iterative
pre-post filtering (IPF) technique used in conjunction with ESAP. The disadvantage
of the external pre- and postprocessing is its added processing cost as compared to
pure baseline JPEG. Nevertheless, these techniques are very promising for very low
bit rate JPEG image enhancement with possible application to low bit rate videocon-
ferencing and MPEG. They could potentially be implemented in firmware and further
optimized to minimize the real-time processing latency. Specifically, the contributions

and findings of this research include the following:

e ESAP provides an optional external blocking reduction module fully compliant

with JPEG syntax.

o ESAP achieves a higher PSNR and better subjective blocking reduction than
JPEG CBS AC prediction.

e ESAP provides a higher PSNR and better blocking reduction than POCS [42,
44, 45].

e Pre- and postprocessed AQ-ESAP and JO-ESAP are objectively and subjec-
tively comparable to EZW and SPIHT SBC performance. They do not match

SPIHT real-time performance in their current state.

e Based on the dbz audio noise reduction system, we developed and modeled IPF;

a JPEG-compliant pre-post filtering and companding system.
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o AQ-IPF-ESAP pre-post processing also improves the PSNR and subjective
quality of JPEG images to levels close to EZW and SPTHT SBC.

e ESAP can enhance other block-based coded images as well:

- VQ
— Color JPEG images
- MPEG

e All the algorithms presented require negligible overhead (< 0.0002 BPP for
rates > 0.25 BPP.)

e The range of improvement of 0.5-3.2 dB PSNR with respect to JPEG is com-

parable or better than other nonlinear methods [55, 58, 61].

e All the above algorithms could be implemented in S/W, F/W or H/W. They
can be potentially paralleled due to DCT block structure.

e We found that pre-post processing does not improve SPIHT SBC images.

Currently, the main disadvantage of the ESAP, AQ, and IPF algorithms is their
computational complexity. ESAP’s complexity is O((M N)?) additions, O((NM)*/4)
multiplications per adaptive convolution for an N x N image and an M x M fil-
ter. However, a parallel decoder implementation could probably respond to real-time
demands. Another ESAP limitation is the MMSE search complexity necessary to
converge to an optimal PSNR point p(z*). Nevertheless, in Section 3.5 we propose
an optimally convergent O((2D — 1)N) search that does not require an exhaustive
O(NP) search (D = 4). Also the IPF algorithm requires preemphasis filtering as
well as deemphasis postfiltering passes. These could be implemented with FFTs, but
they still increase the processing latency. Another minor inconvenience is the non-
monotonic convergence of the IPF algorithm. Due to the adaptive DCT coefficient
quantization it is possible to converge to a local minimum. These local minima do
not differ significantly from each other; therefore a suboptimal minimum provides an

acceptable solution.
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7.2 Future Research

These are some of the areas that were uncovered during this research. They offer the
possibility of further performance improvement beyond what has been presented in

this thesis. They include:

e 2-D pre-post equalization filtering. This goes beyond the simple highpass pre-
emphasis characteristic of Equation 5.4. We foresee two major challenges with

this technique:

— the design of efficient pre-post equalization filters.

— the large experimentation effort that would be required to develop the

necessary rules-of-thumb for generic equalization band gain or attenuation.

e The possibility of performing pizeladaptive pre-post filtering with ESAP en-
hancement versus the current itmage-adaptive pre-post filtering. This would be
analogous to Dolby-B and Dolby-C noise reduction. A significant challenge for
this effort is how to develop the space-varying pre-post filtering rules for proper
tracking at the decoder. The advantage of this model is that it would not re-
quire the computationally intensive iterations of IPF at the encoder. It would

not require any overhead either. Additionally, it would be a symmetric codec.

e Improve IPF with JO versus current AQ. In Chapter 5 we used AQ. Based on
the excellent performance of the JO-ESAP algorithm (Tables 4.1-4.4), there is
the potential to further improve IPF with JO.

e Compare IPF against perceptual optimization of JPEG images [27].
e SPIHT coding of DCT coefficients

— combine SPIHT DCT coefficient coding with arithmetic entropy coding.

— could possibly outperform JPEG’s RLC-Huffman entropy coding in quality

and real-time response.
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e Explore ways to improve real-time performance of AQ, JO, ESAP, and IPF.
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APPENDIX A

Processed Images

100

The images processed with the algorithms presented in this thesis are available at the

following URL:

http://nmsp.gsfe.nasa.gov/~linares/images.html

The 8-BPP gray-scale image format is .pgm. For 24-BPP color images, the image

format is .pnm. The figures are in postscript (.ps) format.

Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
4.1 Lena 512 x 512 8.0 o0 >4
Lena JPEG 0.25 31.68 2
Lena CBS 0.25 31.64 2
Lena ESAP 0.25 32.76 3
Lena AQ 0.25 31.88 3
Lena AQ-ESAP 0.25 33.01 4
Lena JO 0.25 32.34 3
Lena JO-ESAP 0.25 33.07 4




Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
4.1 Lena JPEG 512 x 512 0.5 34.90 2
Lena CBS 0.5 31.87 2
Lena ESAP 0.5 35.59 3
Lena AQ 0.5 35.48 3
Lena AQ-ESAP 0.5 36.23 4
Lena JO 0.5 35.96 3
Lena JO-ESAP 0.5 36.45 4
Lena JPEG 512 x 512 1.0 37.96 2
Lena CBS 1.0 37.95 2
Lena ESAP 1.0 38.37 3
Lena AQ 1.0 38.88 3
Lena AQ-ESAP 1.0 39.23 4
Lena JO 1.0 39.58 3
Lena JO-ESAP 1.0 39.61 4
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Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
4.1 Barbara 512 x 512 8.0 00 >4

Barbara JPEG 0.25 25.02 2
Barbara CBS 0.25 25.01 2
Barbara ESAP 0.25 25.79 3
Barbara AQ 0.25 26.02 3
Barbara AQ-ESAP 0.25 26.96 4
Barbara JO 0.25 26.66 3
Barbara JO-ESAP 0.25 27.05 4
Barbara JPEG 512 x 512 0.5 28.27 2
Barbara CBS 0.5 28.25 2
Barbara ESAP 0.5 29.44 3
Barbara AQ 0.5 29.99 3
Barbara AQ-ESAP 0.5 31.03 4
Barbara JO 0.5 30.63 4
Barbara JO-ESAP 0.5 31.23 4
Barbara JPEG 512 x 512 1.0 33.10 2
Barbara CBS 1.0 33.09 2
Barbara ESAP 1.0 34.01 3
Barbara AQ 1.0 35.22 4
Barbara AQ-ESAP 1.0 35.84 4
Barbara JO 1.0 35.94 4
Barbara JO-ESAP 1.0 36.33 4
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Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
4.2 Lena LOT 256 x 256 0.25 26.44 2
Lena LOT-ESAP 0.25 27.38 3
Lena LOT 0.5 29.18 2
Lena LOT-ESAP 0.5 30.05 3
4.3 Lena VQ 512 x 512 0.25 29.28 1
Lena VQ-ESAP 0.25 29.72 1
Lena VQ 0.5 33.44 1
Lena VQ-ESAP 0.5 33.91 1
4.4 Lena POCS 512 x 512 0.25 32.97 2
Lena POCS-ESAP 0.25 29.66 3
4.5 Lena SBC 512 x 512 0.25 34.10 4
Lena SBC-ESAP 0.25 34.24 4
Lena SBC 0.5 36.89 4
Lena SBC-ESAP 0.5 37.00 4
Lena SBC 1.0 40.13 4
Lena SBC-ESAP 1.0 40.13 4
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Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)

4.6 Alexis.0 JPEG 256 x 256 0.67 38.91 2
Alexis.1 JPEG 38.90 2

Alexis.2 JPEG 38.96 2

Alexis.3 JPEG 38.91 2

Alexis.4 JPEG 38.94 2

Alexis.5 JPEG 38.89 2

Alexis.6 JPEG 38.94 2

Alexis.7T JPEG 38.94 2

Alexis.0 ESAP 256 x 256 0.67 39.17 3

Alexis.1 ESAP 39.36 3

Alexis.2 ESAP 39.25 3

Alexis.3 ESAP 39.39 3

Alexis.4 ESAP 39.30 3

Alexis.5 ESAP 39.34 3

Alexis.6 ESAP 39.23 3

Alexis. 7T ESAP 39.40 3

4.7 | Lena JO-Adap-ROS 512 x 512 0.25 32.86 3
4.8.1 | Lena YUV JPEG 512 x 512 0.21 30.91 2
Lena YUV ESAP 0.21 31.30 3

Lena YUV JPEG 512 x 512 0.30 31.77 2

Lena YUV ESAP 0.30 32.44 3
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Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
1.9 hb06194 SAR 1008 x 1008 8.0 00 >4

s4j SAR JPEG | 1008 x 1008 | 3.98 38.31 2

sda SAR AQ 3.97 43.94 4

sde SAR ESAP 3.97 43.94 4

s2j SAR JPEG | 1008 x 1008 | 2.00 29.33 2

s2a SAR AQ 2.00 | 31.87 4

s2e SAR ESAP 2.00 31.87 4

slj SAR JPEG | 1008 x 1008 | 0.99 26.48 2

sla SAR AQ 0.99 27.00 3

sle SAR ESAP 0.99 27.00 3

s.5) SAR JPEG 1008 x 1008 0.49 24.84 2

s.ha SAR AQ 0.49 24.91 1

s.he SAR ESAP 0.49 25.03 1

s.25) SAR JPEG | 1008 x 1008 | 0.24 23.59 2

s.25a SAR AQ 0.23 23.61 1

s.25e SAR ESAP 0.23 23.72 1
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Sect. Image/Method Dimensions | Rate | PSNR | Subj. Quality

Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
5.3 Preemph. z. 512 x 512 12.0 - -
DRC z, 12.0 - -
Dec. DRC z, 0.25 - -
DRE . 12.0 - -
Deemph. z 0.25 - -
5.4 lena.25.ipf () IPF 512 x 512 0.25 33.15 4
lena.5.ipf 0.5 36.34 4
lenal.0.ipf 1.0 39.28 4
barb.25.ipf 512 x 512 0.25 27.23 4
barb.5.ipf 0.5 31.09 4
barb1.0.ipf 1.0 35.87 4
5.4 lena.25.sp SPTHT 512 x 512 0.25 34.14 4
lena.5.sp 0.5 37.25 4
lenal.0.sp 1.0 40.46 4
barb.25.sp SPITHT 512 x 512 0.25 27.40 4
barb.5.sp 0.5 31.25 4
barb1.0.sp 1.0 36.22 4
6.1 Figure 6.3 (.ps) - - - -
Figure 6.4(a) (.pgm) - - - -
Figure 6.4(b) (.pgm) - - - -
lenna.25.6s.pgm SPIHT | 512 x 512 0.25 34.13 4
lenna.25.6s.esap.pgm 512 x 512 0.25 33.63 4

(SPIHT-ESAP)
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Sect. | Image/Method | Dimensions | Rate | PSNR | Subj. Quality
Hyperlink (BPP) | (dB) | (Tables 7.1 & 7.2)
6.2 Lena IPF-SPIHT 512 x 512 0.25 34.17 4
Lena IPF-SPIHT 0.5 37.26 4
Lena IPF-SPIHT 1.0 40.42 4
Barbara [PF-SPIHT 512 x 512 0.25 24.48 4
Barbara [PF-SPIHT 0.5 31.26 4
Barbara [PF-SPIHT 1.0 36.23 4
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APPENDIX B

Source Code

The C and MATLAB source code for the algorithms presented in this thesis are
available at the following URL:

http://nmsp.gsfe.nasa.gov/~linares/source.html

These public-domain program files supplement the following principal topics of this

thesis:

o JPEG DCT coefficient dump

Adaptive Quantization of JPEG images
o ESAP gray-scale, color, and SAR image postfiltering

e DCT Iterative Pre-post Filtering

SBC Iterative Pre-post Filtering

B.1 JPEG DCT Coefficient Dump

Reference: Section 4.1

The following IJG Version 5b JPEG files below were modified:

djpeg.c

jdcoefct.c -> jdcoefct.c.ESAP.color
jdcoefct.c.ESAP.color

jdcoefct.c.ORIGINAL -> jdcoefct.c
jdcoefct.c.ESAP.gray-scale (only for gray-scale images).
jmorecfg.h



The remaining IJG Version 5b JPEG files below were not modified:

Makefile
README
ansi2knr.1
ansi2knr.c
cderror.h
cdjpeg.h
change.log
cjpeg.c
ckconfig.c
coderules.doc
config.log
config.status*
configurex*
example.c
filelist.doc
install.doc
jcapi.c
jccoefct.c
jccolor.c
jcdctmgr.c
jchuff.c
jcmainct.c
jcmarker.c
jcmaster.c
jcomapi.c
jconfig.bcc
jconfig.cfg
jconfig.dj
jconfig.doc
jconfig.h
jconfig.manx
jconfig.mc6
jconfig.sas
jconfig.st
jconfig.vms
jcparam.c
jcprepct.c
jcsample.c
jdapi.c
jdatadst.c
jdatasrc.c
jdcolor.c
jdct.h

jfdctfst.
jfdctint.
jidctflt.
jidctfst.
jidctint.
jidctred.
jinclude.
jmemansi.
jmemdos.c
jmemdosa.asm
jmemmgr.cC

O B o o o0 o0 o0 o0

jmemname.c
jmemnobs.c
jmemsys.
jpegint.
jpeglib.
jquantl.
jquant2.
jutils.c
jversion.h
libjpeg.a
libjpeg.doc
makcjpeg.st
makdjpeg.st
makefile.ansi

(oINS TN = 2 = = 5

makefile.bcc
makefile.cfg
makefile.dj
makefile.manx
makefile.mc6
makefile.mms
makefile.sas
makefile.unix
makefile.vms
makljpeg.st
makvms.opt
rdbmp.c
rdcolmap.c
rdgif.c
rdjpgcom.c
rdppm.c
rdrle.c
rdtarga.c
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jddctmgr.c structure.doc

jdhuff.c testimg.gif
jdmainct.c testimg. jpg
jdmarker.c testimg.ppm
jdmaster.c testorig. jpg
jdmerge.c testout.gif
jdpostct.c testout. jpg
jdsample.c testout.ppm
jerror.c usage.doc
jerror.h wrbmp.c
jfdctflt.c wrtarga.c
wrgif.c WIrjpgcom.c
Wrppm.c wrrle.c

B.2 Adaptive Quantization of JPEG Images

Reference: Section 4.1

adaptQw_nr_malloc.c
qadaptw.c
nrutil.c

dct_table.h

mydecs.h
nrutil.h

Q.1
Q.255

B.3 ESAP Gray-scale Image Postfiltering

Reference: Section 4.1

esap_r32nr.c
aux_functions_esap_r32nr.c
nrutil.c

esap_r32.h
nrutil.h (nrutil.c and nrutil.h modified by I. Linares on 10-9-97)
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B.4 ESAP YUV-3 Color Image Postfiltering

Reference: Section 4.8
PROCEDURE_color_esap
16x16_MCU_pad.c
cut_image.c
jdcoefct.ESAP.color.c
esap_r32nr.c
aux_functions_esap_r32nr.c

nrutil.c

esap_r32.h
nrutil.h

B.5 SAR-ESAP Image Postfiltering

Reference: Section 4.9
16to8bpp.c

esap_r32nr.c
aux_functions_esap_r32nr.c

nrutil.c

esap_r32.h
nrutil.h

B.6 JPEG Iterative Pre-post Filtering (JPEG-
IPF)

Reference: Sections 5.2 and 5.3
adaptQw.c

qadaptw.c

dct_table.h

mydecs.h

esap_r32nr.c
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aux_functions_esap_r32nr.c
nrutil.c

esap_r32nr.h

nrutil.h

compl_filt2file.m
compl_model.m

compl_model_enc.c

compl_model_enc_aux.c
compl_model_enc.h

B.7 SBC-ESAP Gray-scale Image Postfiltering

Reference: Section 6.1

esap_r33nr.c
aux_functions_esap_r33nr.c
nrutil.c

esap_r33.h
nrutil.h

B.8 SPIHT SBC Iterative Pre-post Filtering (SBC-
IPF)

Reference: Section 6.1

EXAMPLE_codetree_float

float2int.c
compl_model_sbc.c
compl_model_sbc_aux.c
nrutil.c
compl_model_sbc.h
nrutil.h

compl_filt2file.m

112



NOTE: The SPHIT software, Copyright (c) 1995, 1996 by Amir Said
and William A. Pearlman, can not be redistributed without
the consent of the copyright holders. For more information
please refer to the following files:

README
SPIHT.doc
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Adaptive Image Filtering
for DCT Artifact Reduction

Irving Linares

120 pages
Directed by Dr. Russell M. Mersereau

This thesis investigates a number of image-adaptive, JPEG-compatible postfil-
tering and pre-post filtering methods designed to minimize the DCT blocking distor-
tion. A pre-post filtering system uses inverse pair filters for high frequency preem-
phasis before encoding and high frequency deemphasis after decoding. The inverse
pair pre-post filters are related by the inverse relationship P(w) = 1/D(w), where
P is the preemphasis filter and D is the deemphasis postfilter. A postfiltering sys-
tem does not preemphasize the image before encoding. These techniques minimize
the mean square error (MSE), improve the objective and subjective quality of low
bit rate JPEG gray-scale images, and simultaneously enhance their perceptual visual
quality. All the variants of the algorithms presented minimize the MSE below the
level of baseline JPEG image compression, which is used as our comparison basis
for similar bit rates. Convergence to a unique MMSE is possible for fixed quantiza-
tion matrices, however, it cannot be guaranteed when image-adaptive quantization is
jointly optimized under pre-post filtering.

We develop the theoretical basis of the Fstimated Spectrum Adaptive Postfilter
(ESAP) algorithm. ESAP is the main postfiltering algorithm used to minimize DCT
blocking. ESAP utilizes either the default JPEG quantization table or image-adaptive
DCT quantization matrices created in a preprocessing stage prior to image compres-
sion. At the decoder, the algorithm estimates 2-D pixel-adaptive bandwidths directly
from the dequantized DCT coefficients to control a 2-D spatially-adaptive non-linear

postfilter. Consistent with the human visual system tolerance to quantization errors



in the high frequency regions, the algorithm performs directional filtering parallel to
the edges and no filtering across the edges, subject to filter design constraints. Postfil-
tered images show minimal blurring of their true edges while blocking is significantly
removed. ESAP relies on a DFT analysis of the DCT and is compliant with the coded
stream syntax of the Independent JPEG Group (IJG) Version 5b Software.

Additionally, this thesis explores several other variants of the Estimated Spec-
trum Adaptive Postfilter applied to non-DCT coders such as vector quantization
(VQ), subband coders (SBC), and Projection Onto Convex Sets (POCS). We com-
pare the performance of these basic image coding methods against the same extended
coders used with image preprocessing, ESAP postprocessing, or both, in a coder-
compliant manner. These methods may or may not incorporate image-adaptive
quantization and pre-post filtering. We also extend the concepts of the dbz audio
noise reduction systems to model and demonstrate an lterative Pre-post Filter (IPF).
The IPF is applied to JPEG and to Set Partitioning In Hierarchical Trees (SPIHT)
octave-band subband coders. We also process JPEG color images, synthetic aperture
radar (SAR) images, and image sequences.

Typical PSNR improvement depends on the image, the encoding method, and
the bit rate, and can range between 0.5-3.2 dB over baseline JPEG for 512x512 8-
BPP gray-scale images. A comparison including all the treated techniques is presented

at the conclusion of the thesis.



